The healthcare industry, aided by technology, leverages the Internet of Things (IoT) paradigm to offer patient/user-related services that are ubiquitous and personalized. The authorized repository stores ubiquitous data for which access-level securities are granted. These security measures ensure that only authorized entities can access patient/user health information, preventing unauthorized entries and data downloads. However, recent sophisticated security and privacy attacks such as data breaches, data integrity issues, and data collusion have raised concerns in the healthcare industry. As healthcare data grows, conventional solutions often fail due to scalability concerns, causing inefficiencies and delays. This is especially true for multi-key authentication. Dependence on conventional access control systems leads to security flaws and authorization errors caused by static user behaviour models. This article introduces an Opportunistic Access Control Scheme (OACS) for leveraging access-level security. This approach is a defendable access control scheme in which the user permissions are based on their requirement and data. After accessing the healthcare record, a centralized IoT security augmentation and assessment is provided. The blockchain records determine and revoke the access grant based on previous access and delegation sequences. This scheme analyses the possible delegation methods for providing precise users with interrupt-free healthcare record access. The blockchain recommendations are analyzed using a trained learning paradigm to provide further access and denials. The proposed method reduces false rates by 11.74%, increases access rates by 13.1%, speeds up access and processing by 12.36% and 13.23%, respectively, and reduces failure rates by 9.94%. The OACS decreases false rates by 10.64%, processing time by 15.62%, and failure rates by 10.95%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880524 | PMC |
http://dx.doi.org/10.1038/s41598-025-90908-1 | DOI Listing |
Adv Mater
March 2025
Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
Mechanical expansion and contraction of pores within photosynthetic organisms regulate a series of processes that are necessary to manage light absorption, control gas exchange, and regulate water loss. These pores, known as stoma, allow the plant to maximize photosynthetic output depending on environmental conditions such as light intensity, humidity, and temperature by actively changing the size of the stomal opening. Despite advances in artificial photosynthetic systems, little is known about the effect of such mechanical actuation in synthetic materials where chemical reactions occur.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2025
Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
The environmental impact of plastics is worsened by their inadequate end-of-life disposal, leading to the ubiquitous presence of micro- (MPs) and nanosized (NPs) plastic particles. MPs and NPs are thus widely present in water and air and inevitably enter the food chain, with inhalation and ingestion as the main exposure routes for humans. Many recent studies have demonstrated that MPs and NPs gain access to several body compartments, where they are taken up by cells, increase the production of reactive oxygen species, and lead to inflammatory changes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Department of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, Republic of Korea.
Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-based anticounterfeiting pattern and a simple algorithm for discrimination. Nanopatterns aligned with the direction of incident light were fabricated by electrospinning, while CuO and ZnO were grown independently through a solution process.
View Article and Find Full Text PDFJ Clin Gastroenterol
March 2025
Department of Psychology, University of Pennsylvania, Philadelphia, PA.
Goals: To test the efficacy of a self-help cognitive behavioral therapy (CBT) for irritable bowel syndrome (IBS) app compared with an active control app.
Background: IBS is a disorder of gut-brain interaction that can result in significant distress, disability, and psychiatric co-morbidity. CBT is an effective treatment for IBS.
Pers Soc Psychol Bull
March 2025
Rutgers University-New Brunswick, Piscataway, NJ, USA.
People who are stigmatized along concealable features (e.g., individuals reporting adverse childhood experiences) often experience challenges to the self-concept, which can promote psychological distress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!