Cell type repertoires have expanded extensively in metazoan animals, with some clade-specific cells being crucial to evolutionary success. A prime example are the skeletogenic cells of vertebrates. Depending on anatomical location, these cells originate from three different precursor lineages, yet they converge developmentally towards similar cellular phenotypes. Furthermore, their 'skeletogenic competency' arose at distinct evolutionary timepoints, thus questioning to what extent different skeletal body parts rely on truly homologous cell types. Here, we investigate how lineage-specific molecular properties are integrated at the gene regulatory level, to allow for skeletogenic cell fate convergence. Using single-cell functional genomics, we find that distinct transcription factor profiles are inherited from the three precursor states and incorporated at lineage-specific enhancer elements. This lineage-specific regulatory logic suggests that these regionalized skeletogenic cells are distinct cell types, rendering them amenable to individualized selection, to define adaptive morphologies and biomaterial properties in different parts of the vertebrate skeleton.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880379 | PMC |
http://dx.doi.org/10.1038/s41467-025-57480-8 | DOI Listing |
Oncotarget
March 2025
Worldwide Innovative Network (WIN) Association - WIN Consortium, Chevilly-Larue, France.
The human genome project ushered in a genomic medicine era that was largely unimaginable three decades ago. Discoveries of druggable cancer drivers enabled biomarker-driven gene- and immune-targeted therapy and transformed cancer treatment. Minimizing treatment not expected to benefit, and toxicity-including financial and time-are important goals of modern oncology.
View Article and Find Full Text PDFSci Transl Med
March 2025
Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China.
The benefit of hyperthermic intraperitoneal chemotherapy (HIPEC) in ovarian cancer remains controversial, hindering the development of rational combination therapies based on hyperthermia (HT). This study reports the preliminary results of the neoadjuvant HIPEC (NHIPEC) trial (ChiCTR2000038173), demonstrating enhanced tumor response in high-grade serous ovarian cancer with NHIPEC. Through single-cell RNA sequencing analysis, we identified both homogeneous and heterogeneous cellular responses to HT within the tumor and microenvironment.
View Article and Find Full Text PDFSci Transl Med
March 2025
Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
Interstitial lung disease (ILD) consists of a group of immune-mediated disorders that can cause inflammation and progressive fibrosis of the lungs, representing an area of unmet medical need given the lack of disease-modifying therapies and toxicities associated with current treatment options. Tissue-specific splice variants (SVs) of human aminoacyl-tRNA synthetases (aaRSs) are catalytic nulls thought to confer regulatory functions. One example from human histidyl-tRNA synthetase (HARS), termed HARS because the splicing event resulted in a protein encompassing the WHEP-TRS domain of HARS (a structurally conserved domain found in multiple aaRSs), is enriched in human lung and up-regulated by inflammatory cytokines in lung and immune cells.
View Article and Find Full Text PDFJ Immunol
February 2025
Genentech, Inc, South San Francisco, CA, United States.
A gene encoding the transcription factor RTF1 has been associated with an increased risk of ulcerative colitis (UC). In this study, we investigated its function in modulating T cells expressing interleukin-17A (Th17 cells), a cardinal cell type promoting intestinal inflammation. Our results indicate that Rtf1 deficiency disrupts the differentiation of Th17 cells, while leaving regulatory T cells (Treg) unaffected.
View Article and Find Full Text PDFDiscov Oncol
March 2025
Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
Background: Glioma, the most common primary cancer of the central nervous system, characterizes significant heterogeneity, presenting major challenges for therapeutic approaches and prognosis. In this study, the interactions between malignant glioma cells and macrophages/monocytes, as well as their influence on tumor progression and treatment responses, were explored using comprehensive single-cell RNA sequencing analysis.
Methods: RNA-seq data from the TCGA and CGGA databases were integrated and an in-depth analysis of glioma samples was performed using single-cell RNA sequencing, functional enrichment analysis, developmental trajectory analysis, cell-cell communication analysis, and gene regulatory network analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!