Considerations for Regulatory Reusability of Dynamic Tools in the New Drug Development.

Pharm Res

Office of Clinical Pharmacology (OCP), Office of Translational Sciences (OTS), Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.

Published: March 2025

Model-informed drug development (MIDD) approaches have become indispensable for new drug development and to address regulatory challenges. Dynamic tools, such as population pharmacokinetics (popPK), physiologically-based pharmacokinetics (PBPK), and quantitative systems pharmacology (QSP) models, are routinely employed to enhance the efficiency of drug development. Recently, the Fit-for-Purpose (FFP) initiative and the Model Master File (MMF) framework have emerged to support model reusability and sharing in regulatory settings. In this manuscript we share key insights from the Session "Pathways for Regulatory Acceptance of Dynamic Tools in the New Drug Space" of Workshop "Considerations and Potential Regulatory Applications for a Model Master File", hosted by the U.S. Food and Drug Administration (FDA) and the Center for Research on Complex Generics (CRCG) and discuss the considerations for regulatory acceptance of dynamic modeling tools. Presentations at the workshop explored current practices in PBPK model evaluation, the potential for popPK models in bioequivalence (BE) assessments, and the implications of reusing models. Challenges such as context-specific validation, version control, and the impact of scientific and technological advancements on model reuse were emphasized. The workshop underscored the importance of clear regulatory pathways and structured frameworks for the consistent application of reusable models. The MMF's potential to streamline reviews and reduce redundancies was noted, although operational details require further elaboration. Continued collaboration among stakeholders is essential to refine model-sharing practices, enhance model validation processes, and promote transparency, ensuring that MIDD approaches remain robust and adaptable to evolving regulatory needs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-025-03831-5DOI Listing

Publication Analysis

Top Keywords

drug development
16
dynamic tools
12
considerations regulatory
8
tools drug
8
midd approaches
8
model master
8
regulatory acceptance
8
acceptance dynamic
8
regulatory
7
drug
6

Similar Publications

The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.

View Article and Find Full Text PDF

T-cell Engagers in Prostate Cancer.

Eur Urol

March 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA. Electronic address:

Owing to the "cold" tumor immune microenvironment of prostate cancer, immune-targeting agents have shown limited efficacy in patients with advanced prostate cancer, highlighting the need for new therapies with novel mechanisms of action. In this context, T-cell engagers (TCEs), which induce T-cell-mediated killing of cancer cells by binding the CD3 receptor on T cells and a specific tumor antigen expressed on malignant cells, represent a promising therapeutic option. Multiple studies have explored the use of TCEs in previously treated patients with metastatic castration-resistant prostate cancer, and several ongoing trials are currently assessing novel TCEs either as single agents or in combinatorial regimens with molecules with a distinct mechanism of action (eg, androgen receptor pathway inhibitors and other immune-targeting agents).

View Article and Find Full Text PDF

Bispecific antibody therapy for lymphoma.

Best Pract Res Clin Haematol

December 2024

330 Brookline Ave, Boston, MA, 02215, USA. Electronic address:

The rapid development of novel therapeutics in B-cell Non-Hodgkin's lymphoma (B-NHL) over the past decade has presented a critical inflection point for the field. Bispecific antibodies are one such therapeutic class emerging as an effective, off-the-shelf option for B-NHL. In this review, we focus primarily on Diffuse Large B-cell Lymphoma (DLBCL), highlighting the evolution, comparison, tolerability, ongoing challenges, and future potential of bispecific antibodies that are currently approved or in clinical trials for B-NHL.

View Article and Find Full Text PDF

Association Between Cigarette Smoking and Subclinical Markers of Cardiovascular Harm.

J Am Coll Cardiol

March 2025

Ciccarone Center for Prevention of Cardiovascular Disease, Johns Hopkins Medicine, Baltimore, Maryland, USA; American Heart Association Tobacco Regulation and Addiction Center, Dallas, Texas, USA. Electronic address:

Background: Cigarette smoking is a strong risk factor for cardiovascular harm.

Objectives: The study sought to explore the detailed relationships between smoking intensity, pack-years, and time since cessation with inflammation, thrombosis, and subclinical atherosclerosis markers of cardiovascular harm.

Methods: We included 182,364 participants (mean age 58.

View Article and Find Full Text PDF

Focus of this study is on the use of the hydrazone compound (3) (N-(4-bromobenzylidene)-4-(1H-indol-3-yl) butane hydrazide), which was previously prepared from the reaction of the compound p-bromobenzaldehyde with the corresponding hydrazide (2), as an intermediate compound for the synthesis of azetidine, thiazolidine, tetrazole, oxadiazole and phthalazine heterocyclic compounds through its reaction with some cyclic reagents and catalysts such as chloro acetyl chloride, thioglycolic acid, sodium-azid, lead dioxide and Hydrogen chloride gas. The prepared compounds were characterized using physical properties and also spectroscopic methods such as infrared spectroscopy, nuclear magnetic resonance spectra of the proton and the isotope of carbon as well as mass spectrometry, which accurately identified the proposed structures of the prepared compounds. The identity of the prepared compounds was determined using physical and spectroscopic properties, where infrared and HNMR spectroscopy of the proton as well as carbon were used in addition to using mass spectrometry to verify the validity of the prepared structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!