Attentional states reflect the changing behavioral relevance of stimuli in one's environment, having important consequences for learning and memory. Supporting well-established cortical contributions, attentional states are hypothesized to originate from subcortical neuromodulatory nuclei, such as the basal forebrain (BF) and locus coeruleus (LC), which are among the first to change with aging. Here, we characterized the interplay between BF and LC neuromodulatory nuclei and their relation to two common afferent cortical targets important for attention and memory, the posterior cingulate cortex and hippocampus, across the adult lifespan. Using an auditory target discrimination task during functional MRI, we examined the influence of attentional and behavioral salience on task-dependent functional connectivity in younger (19-45 years) and older adults (66-86 years). In younger adults, BF functional connectivity was largely driven by target processing, while LC connectivity was associated with distractor processing. These patterns are reversed in older adults. This age-dependent connectivity pattern generalized to the nucleus basalis of Meynert and medial septal subnuclei. Preliminary data from middle-aged adults indicates a transitional stage in BF and LC functional connectivity. Overall, these results reveal distinct roles of subcortical neuromodulatory systems in attentional salience related to behavioral relevance and their potential reversed roles with aging, consistent with managing increased salience of behaviorally irrelevant distraction in older adults. Such prominent differences in functional coupling across the lifespan from these subcortical neuromodulatory nuclei suggests they may be drivers of widespread cortical changes in neurocognitive aging, and middle age as an opportune time for intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11357-025-01582-0DOI Listing

Publication Analysis

Top Keywords

neuromodulatory nuclei
16
subcortical neuromodulatory
12
functional connectivity
12
older adults
12
attentional states
8
behavioral relevance
8
neuromodulatory
5
functional
5
connectivity
5
adults
5

Similar Publications

Attentional states reflect the changing behavioral relevance of stimuli in one's environment, having important consequences for learning and memory. Supporting well-established cortical contributions, attentional states are hypothesized to originate from subcortical neuromodulatory nuclei, such as the basal forebrain (BF) and locus coeruleus (LC), which are among the first to change with aging. Here, we characterized the interplay between BF and LC neuromodulatory nuclei and their relation to two common afferent cortical targets important for attention and memory, the posterior cingulate cortex and hippocampus, across the adult lifespan.

View Article and Find Full Text PDF

Cocaine- and amphetamine-regulated transcript (CART) peptide has been implicated in stress-related behaviors that are regulated by central serotonergic (5-HT) systems in the dorsal raphe nucleus (DRN). Here, we aimed to investigate the interaction between CART and DRN 5-HTergic systems after initially observing CART axonal terminals in the DRN. We found that microinfusion of CART peptide into the DRN-induced anxiogenic effects in male C57BL/6J mice, while central administration of CART reduced c-Fos in 5-HT neurons.

View Article and Find Full Text PDF

The / gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei.

View Article and Find Full Text PDF

The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.

View Article and Find Full Text PDF

Amygdala intercalated cells form an evolutionarily conserved system orchestrating brain networks.

Nat Neurosci

February 2025

Department of Neurobiology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany.

The amygdala attributes valence and emotional salience to environmental stimuli and regulates how these stimuli affect behavior. Within the amygdala, a distinct class of evolutionarily conserved neurons form the intercalated cell (ITC) clusters, mainly located around the boundaries of the lateral and basal nuclei. Here, we review the anatomical, physiological and molecular characteristics of ITCs, and detail the organization of ITC clusters and their connectivity with one another and other brain regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!