Emerging synergistic strategies for enhanced antibacterial sonodynamic therapy: Advances and prospects.

Ultrason Sonochem

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China. Electronic address:

Published: February 2025

Antibacterial therapy has been extensively applied in medical field to alleviate the severity and mortality of infection. However, it still exists some issues such as drug side effects, limited efficacy and bacterial resistance. Among the alternative therapies, antibacterial sonodynamic therapy (aSDT) has been explored as a promising approach to tackle those crises. It is meaningful to investigate superior strategy to augment the therapeutic efficacy of aSDT. This review summarizes the potential aSDT-based antibacterial mechanisms and comprehensively discusses the prevailing synergistic strategies, such as nanomaterials-based aSDT antibacterial strategy, aSDT + strategy with physical, chemical and biological methods. Moreover, we also reviewed the medical applications of aSDT strategies. Finally, the perspectives on the current challenges that need be resolved in aSDT are proposed. We expect that this review could provide robust support to expedite the clinical applications of aSDT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2025.107288DOI Listing

Publication Analysis

Top Keywords

synergistic strategies
8
antibacterial sonodynamic
8
sonodynamic therapy
8
applications asdt
8
asdt
6
antibacterial
5
emerging synergistic
4
strategies enhanced
4
enhanced antibacterial
4
therapy advances
4

Similar Publications

Single-Atom Catalysts Boosted Electrochemiluminescence.

Chempluschem

March 2025

Shanghai University, Chemistry, Shangda Road 99, 200444, Shanghai, CHINA.

Electrochemiluminescence (ECL) combines electrochemical redox processes with photochemical light emission, offering exceptional sensitivity, spatial control, and stability. Widely applied in biosensing, medical diagnostics, and environmental monitoring, its efficiency often depends on advanced catalytic materials. Single-atom catalysts (SACs), featuring isolated metal atoms dispersed on a support, have emerged as promising candidates due to their unique electronic structures, high atom utilization, and tunable catalytic properties.

View Article and Find Full Text PDF

Phosphating CoMoO-Modified Hematite-Based Photoanode Enhances Surface Charge Transfer and Reaction Activity for Efficient Photoelectrochemical Water Oxidation.

Langmuir

March 2025

Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China.

The photoelectrochemical properties of hematite-based photoanodes are hindered by severe carrier recombination and poor reaction activity, which is a major challenge. Herein, we coupled zirconium-doped α-FeO (Zr:FeO) and phosphating cobalt molybdate electrocatalyst (P-CoMoO) to ameliorate the above difficulties. The conductivity and carrier density of hematite significantly increase by Zr doping.

View Article and Find Full Text PDF

Zinc-ion batteries become a major research focus in energy storage, valued for their low cost and high safety. However, their widespread application is hindered by poor zinc anode stability caused by dendrites, side reactions, and poor performance across a wide temperature range at a strong hydrogen bond network aqueous electrolyte. In this study, we propose a strategy for the synergistic combination of a polyacrylamide hydrogel with sucrose.

View Article and Find Full Text PDF

The sensitive, efficient, and simultaneous assay of creatinine and urea in different body fluid is crucial for the daily detection and treatment of chronic kidney disease. Here, we exploited a versatile composite surface enhanced Raman scattering (SERS) substrate of polydimethylsiloxane (PDMS)-flower-like ZIF-67@Ag nanoparticles (NPs) based on simple in-situ growth and ion sputtering strategies. The plasmonic Ag NPs assembled on the three-dimensional anisotropic ZIF-67 matrix, facilitating numerous resonant electromagnetic "hotspots".

View Article and Find Full Text PDF

Background: Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant with significant risks to ecosystems and human health. Magnetic molecularly imprinted polymers (MIPs) provide a promising solution for selectively extracting PFOS from contaminated water. However, while bifunctional monomer imprinting improves the imprinting effect by introducing diverse functional groups, it can also increase non-specific adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!