Fibroblast activation protein (FAP), selectively expressed on activated fibroblasts in proliferating tissues, is emerging as a promising target in oncology. In lung cancer, the leading cause of cancer-related deaths worldwide, [F]FDG PET/CT has set the bar high and earned widespread recognition in clinical guidelines for its essential role in staging and follow-up. Yet, FAP-targeted imaging agents like FAPI PET/CT have demonstrated significant potential due to their high tumor specificity, rapid tracer uptake, and low background activity. This review focuses on the role of FAPI PET/CT in lung cancer, highlighting its applications in staging, biomarker evaluation, and clinical management. FAP expression correlates with cancer associated fibroblast-driven tumorigenesis in lung cancer, showing higher expression in nonsmall cell lung cancer (NSCLC) than in small cell lung cancer (SCLC) subtypes. Studies reveal that FAPI PET/CT provides comparable or superior detection rates for primary tumors and metastases compared to [F]FDG PET/CT, particularly in brain, pleural, and bone lesions. It also enhances accuracy in lymph node staging, influencing disease management by enabling surgical resection in cases misclassified by [F]FDG PET/CT. Despite these advantages, several challenges remain, such as differentiating benign from malignant lesions, assessing FAPI's prognostic implications or its role in treatment response monitoring. Future directions include exploring FAPI-based theranostics, standardizing radiopharmaceuticals, and conducting well-designed, adequately powered prospective trials. FAPI PET/CT represents a transformative diagnostic tool, complementing or potentially surpassing [F]FDG PET/CT in precision lung cancer care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.semnuclmed.2025.02.011 | DOI Listing |
Eur J Cardiothorac Surg
March 2025
Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, ; Taipei City, Taiwan.
Objectives: To assess the prognostic impact of adequate lymphadenectomy and determine the optimal nodal assessment for different clinical stages of lung cancer.
Methods: We retrospectively reviewed 1214 patients with clinical stage I-III non-small cell lung cancer who had preoperative PET/CT and curative surgery (2006-2017). Patients were categorized based on whether they had adequate [R0] or inadequate lymphadenectomy [R(un)].
Eur J Cardiothorac Surg
March 2025
Department of Cardiothoracic Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 525 E 68 St, M-404, New York, NY 10065, USA.
Objectives: Compare oncologic outcomes between single-segment and multi-segment resections in patients with clinical stage IA1 and IA2 non-small cell lung cancer.
Methods: A retrospective review (2011-2022) was conducted using a prospectively maintained database. Patients undergoing anatomical segmentectomy for clinical stage IA ≤ 2 cm non-small cell lung cancers were included.
J Proteome Res
March 2025
Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States.
Lung cancer stands as the leading cause of cancer-related death worldwide, impacting both men and women in the United States and beyond. Radiation therapy (RT) serves as a key treatment modality for various lung malignancies. Our study aims to systematically assess the prognosis and influence of RT on metabolic reprogramming in patients diagnosed with nonsmall-cell lung cancer (NSCLC) through longitudinal metabolic profiling.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Lung cancer exhibits altered metabolism, influencing its response to radiation. To investigate the metabolic regulation of radiation response, we conducted a comprehensive, metabolic-wide CRISPR-Cas9 loss-of-function screen using radiation as selection pressure in human non-small cell lung cancer. Lipoylation emerged as a key metabolic target for radiosensitization, with lipoyltransferase 1 (LIPT1) identified as a top hit.
View Article and Find Full Text PDFSci Adv
March 2025
School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China.
Intrabronchial delivery of therapeutic agents is critical to the treatment of respiratory diseases. Targeted delivery is demanded because of the off-target accumulation of drugs in normal lung tissues caused by inhalation and the limited motion dexterity of clinical bronchoscopes in tortuous bronchial trees. Herein, we developed microrobotic swarms consisting of magnetic hydrogel microparticles to achieve intrabronchial targeted delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!