Neurotensin Regulates Primate Ovulation Via Multiple Neurotensin Receptors.

Endocrinology

Department of Basic and Translational Sciences, Eastern Virginia Medical School, Old Dominion University, Norfolk, VA, 23501, USA.

Published: March 2025

Neurotensin (NTS), a small neuropeptide, was recently established as a key paracrine mediator of ovulation. NTS mRNA is highly expressed by granulosa cells in response to the luteinizing hormone (LH) surge, and multiple NTS receptors are expressed by cells of the ovulatory follicle. To identify the role of NTS receptors NTSR1 and SORT1 in ovulation in vivo, the dominant follicle of cynomolgus macaques (Macaca fascicularis) was injected with either vehicle control, the general NTS receptor antagonist SR142948, the NTSR1-selective antagonist SR48692, or the SORT1-selective antagonist AF38469. Human chorionic gonadotropin (hCG) was then administered to initiate ovulatory events. Ovulation was successful in all control-injected follicles. Rupture sites were smaller or absent after injection with NTS receptor antagonists. Histological analysis of follicles injected with SR142948, SR48692, or AF38469 revealed increased red blood cell extravasation and pooling in the follicle antrum when compared to controls. NTS receptor antagonist-injected follicles also showed dysregulated capillary formation and reduced luteinization of the granulosa cell layer. Prior in vitro studies showed that NTS significantly increased macaque ovarian microvascular endothelial cell (mOMEC) migration, while decreasing monolayer permeability. The NSTR1 antagonist SR48692 or siRNA knockdown of NTSR1 abrogated the ability of NTS to stimulate mOMEC migration and to decrease monolayer permeability. Similar experiments performed with the SORT1 antagonist AF38469 or siRNA knockdown of SORT1 also resulted in ablation of NTS-mediated changes in migration and permeability after SORT1 signaling was impaired. Together, these data implicate both NTSR1 and SORT1 as critical mediators of NTS-stimulated ovulation, luteinization, and angiogenesis of the ovulatory follicle.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endocr/bqaf041DOI Listing

Publication Analysis

Top Keywords

nts receptor
12
nts
9
nts receptors
8
ovulatory follicle
8
ntsr1 sort1
8
antagonist sr48692
8
antagonist af38469
8
momec migration
8
monolayer permeability
8
sirna knockdown
8

Similar Publications

Neurotensin Regulates Primate Ovulation Via Multiple Neurotensin Receptors.

Endocrinology

March 2025

Department of Basic and Translational Sciences, Eastern Virginia Medical School, Old Dominion University, Norfolk, VA, 23501, USA.

Neurotensin (NTS), a small neuropeptide, was recently established as a key paracrine mediator of ovulation. NTS mRNA is highly expressed by granulosa cells in response to the luteinizing hormone (LH) surge, and multiple NTS receptors are expressed by cells of the ovulatory follicle. To identify the role of NTS receptors NTSR1 and SORT1 in ovulation in vivo, the dominant follicle of cynomolgus macaques (Macaca fascicularis) was injected with either vehicle control, the general NTS receptor antagonist SR142948, the NTSR1-selective antagonist SR48692, or the SORT1-selective antagonist AF38469.

View Article and Find Full Text PDF

Role of substantia Nigra dopaminergic neurons in respiratory modulation and limitations of levodopa in Parkinson's disease.

Exp Neurol

February 2025

Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000, São Paulo, SP, Brazil. Electronic address:

The substantia nigra pars compacta (SNpc), a midbrain region enriched with dopaminergic neurons projecting to the dorsal striatum, is essential for motor control and has been implicated in respiratory modulation. In Parkinson's disease (PD) models, the loss of SNpc dopaminergic neurons correlates with baseline respiratory deficits, suggesting a potential link between dopaminergic dysfunction and respiratory impairments. To explore this, we used adult transgenic mice (Vglut Ai6 and Vgat Ai6) to map neurotransmitter phenotypes, as well as DAT mice for pharmacogenetic modulation of SNpc dopaminergic neurons using excitatory (Gq) or inhibitory (Gi) designer receptors exclusively activated by designer drugs (DREADDs).

View Article and Find Full Text PDF

Respiratory dysfunction is a prevalent comorbidity in Alzheimer's disease (AD), yet its underlying mechanisms are poorly understood. Using the Streptozotocin (STZ) -induced rat model of AD, which replicates respiratory dysfunction and brain pathologies observed in human AD, we analyzed how these impairments relate to central neurological integration within the peripheral chemoreflex. Our focus was on glutamatergic signaling at the synapse between peripheral chemoafferents and second-order neurons in the nucleus tractus solitarii (nTS), a critical brainstem center for respiratory control.

View Article and Find Full Text PDF

This study elucidated that the neurotensin receptor 1 agonist PD149163 ameliorated the kidney inflammation in endotoxemic mice inhibiting the nuclear factor kappa β (NF-kβ) pathway and reducing the oxidative stress in a dose-dependent manner. Swiss albino female mice (8 weeks; 25 ± 5 gms) were maintained in six groups (n = 6): Group 1/control, Group 2, Group 3 and Group 4 were exposed to lipopolysaccharide/LPS (1 mg/kg bw; i.p; 5 days) followed by PD149163 treatment with low dose/NTS (50 μg/kg BW i.

View Article and Find Full Text PDF

Many retinal diseases are characterized by direct or indirect retinal ganglion cell (RGC) neurodegeneration. In glaucoma and optic nerve neuropathies, RGCs are the primary affected cells, whereas in photoreceptor dystrophies, RGC loss is secondary to the death of rods and cones. The death of RGCs in either case will irreversibly cause loss of vision, as RGCs are the sole output neurons of the retina.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!