NP-TCMtarget: a network pharmacology platform for exploring mechanisms of action of traditional Chinese medicine.

Brief Bioinform

Shanxi Key Lab for Modernization of TCVM, College of Basic Sciences, Shanxi Agricultural University, 1 Mingxian South Road, Taigu District, Jinzhong, 030801, China.

Published: November 2024

The biological targets of traditional Chinese medicine (TCM) are the core effectors mediating the interaction between TCM and the human body. Identification of TCM targets is essential to elucidate the chemical basis and mechanisms of TCM for treating diseases. Given the chemical complexity of TCM, both in silico high-throughput compound-target interaction predicting models and biological profile-based methods have been commonly applied for identifying TCM targets based on the structural information of TCM chemical components and biological information, respectively. However, the existing methods lack the integration of TCM chemical and biological information, resulting in difficulty in the systematic discovery of TCM action pathways. To solve this problem, we propose a novel target identification model NP-TCMtarget to explore the TCM target path by combining the overall chemical and biological profiles. First, NP-TCMtarget infers TCM effect targets by calculating associations between herb/disease inducible gene expression profiles and specific gene signatures for 8233 targets. Then, NP-TCMtarget utilizes a constructed binary classification model to predict binding targets of herbal ingredients. Finally, we can distinguish TCM direct and indirect targets by comparing the effect targets and binding targets to establish the action pathways of herbal component-direct target-indirect target by mapping TCM targets in the biological molecular network. We apply NP-TCMtarget to the formula XiaoKeAn to demonstrate the power of revealing the action pathways of herbal formula. We expect that this novel model could provide a systematic framework for exploring the molecular mechanisms of TCM at the target level. NP-TCMtarget is available at http://www.bcxnfz.top/NP-TCMtarget.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879102PMC
http://dx.doi.org/10.1093/bib/bbaf078DOI Listing

Publication Analysis

Top Keywords

tcm targets
16
tcm
14
action pathways
12
targets
10
traditional chinese
8
chinese medicine
8
mechanisms tcm
8
tcm chemical
8
chemical biological
8
tcm target
8

Similar Publications

Purpose: This study aimed to examine the differential expression profiles of plasma metabolites in rat models of post-traumatic osteoarthritis (PTOA) and elucidate the roles of metabolites and their pathways in the progression of PTOA using bioinformatics analysis.

Method: Plasma samples were collected from 24 SD female rats to model PTOA, and metabolomic assays were conducted. The samples were divided into three groups: the surgically induced mild PTOA group (Group A: 3 weeks postoperative using the modified Hulth model; age 2 months), the surgically induced severe PTOA group (Group B: 5 weeks postoperative using the modified Hulth model; age 2 months), and the normal control group (Group C: healthy rats aged 2 months).

View Article and Find Full Text PDF

Objective: To investigate the relationship between heart failure (HF) and gut microbiota-mediated energy metabolism, and to explore the role of Shenfu Injection in this process.

Materials And Methods: In this study, Adriamycin-induced chronic heart failure (CHF) rat model was used and randomly divided into the blank control group (Normal,  = 9), HF control group (Model,  = 12), Shenfu Injection treatment group (SFI,  = 9), and positive drug control group (TMZ,  = 9). The changes in gut microbiota structure were analyzed by 16S rRNA high-throughput sequencing, the content of short-chain fatty acids (SCFAs) was detected by targeted metabolomics technology, and cardiac function and energy metabolism-related indicators were evaluated.

View Article and Find Full Text PDF

Ferroptosis is an emerging form of programmed cell death triggered by iron-dependent lipid peroxidation. It is distinguished from other forms of cell death by its unique morphological changes and characteristic fine-tuned regulatory gene network. Since its pivotal involvement in the pathogenesis and therapeutic interventions of various diseases, such as malignant tumors, cardiovascular and cerebrovascular diseases, and traumatic disorders, has been well-established, ferroptosis has garnered significant attention in contemporary physiological and pathological research.

View Article and Find Full Text PDF

Background: Diminished ovarian reserve (DOR), a major cause of female infertility, is closely linked to insulin resistance (IR). Traditional Chinese Medicine (TCM) approaches, such as the Gengnianchun (GNC) formula, focus on restoring ovarian function by improving IR and regulating hormonal balance. Despite GNC's demonstrated efficacy, its precise therapeutic mechanisms remain unclear.

View Article and Find Full Text PDF

Advances in the structures, mechanisms and targeting of molecular chaperones.

Signal Transduct Target Ther

March 2025

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.

Molecular chaperones, a class of complex client regulatory systems, play significant roles in the prevention of protein misfolding and abnormal aggregation, the modulation of protein homeostasis, and the protection of cells from damage under constantly changing environmental conditions. As the understanding of the biological mechanisms of molecular chaperones has increased, their link with the occurrence and progression of disease has suggested that these proteins are promising targets for therapeutic intervention, drawing intensive interest. Here, we review recent advances in determining the structures of molecular chaperones and heat shock protein 90 (HSP90) chaperone system complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!