A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Overexpressing mannose-binding Lectin (NTL) protein affects sugarcane physiological status and increase its resistance to aphids (Ceratovacuna langigera). | LitMetric

Overexpressing mannose-binding Lectin (NTL) protein affects sugarcane physiological status and increase its resistance to aphids (Ceratovacuna langigera).

Int J Biol Macromol

State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China. Electronic address:

Published: March 2025

Narcissus tazetta Lectin (NTL) is a mannose-binding protein, known for its resistance to aphid (Ceratovacuna langigera). However, the mechanism underlying NTL-enhanced plant resistance to aphid remains elusive. Here, we produced NTL-overexpressing (NTL-OE) sugarcane lines that showed strong resistance to aphid. Overexpression of NTL gene led to reduction of total soluble sugar content, sucrose content, fructose content, soluble protein content, and most amino acid levels in sugarcane sap. Transcriptomic analysis and pathway annotation revealed significant role of plant hormone signal transduction, amino acid metabolism, photosynthesis-related pathways, and carbohydrate metabolism. Association analysis of the transcriptome and microbiome of NTL-OE sugarcane fed aphids showed the significance of Christensenellaceae family in sugar-related metabolic regulation and Buchnera in amino acid-related metabolic regulation, which corroborated the essential role of sugars and amino acids in aphid survival. Correlation analysis between NTL-OE sugarcane and aphid transcriptome discovered gene modules related to plant hormone signaling, amino acid metabolism, photosynthesis-related pathways, and sugar metabolism. Taken together, sugars and amino acids that were impacted by NTL protein overexpression in sugarcane sap were suggested to be critical for fed aphids' survival. Notably, HSP70 gene was up-regulated in both NTL-OE sugarcane and fed aphids that requires further investigation. This study suggested the role of NTL protein in plant resistance to aphids, offering new insights for mechanisms underlying NTL-enhanced plant resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141636DOI Listing

Publication Analysis

Top Keywords

ntl-oe sugarcane
16
ntl protein
12
resistance aphid
12
plant resistance
12
amino acid
12
lectin ntl
8
resistance aphids
8
ceratovacuna langigera
8
underlying ntl-enhanced
8
ntl-enhanced plant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!