Study Objectives: To investigate associations between adolescent sleep duration and timing, and blood leukocyte DNA methylation, one type of epigenetic modification that may respond to changes in sleep.
Methods: Cross-sectional epigenome-wide analysis of DNA methylation was conducted to identify sleep-related CpG sites in 269 females and 233 males (14.4±2.1 years on average) from the ELEMENT cohort study, in Mexico City. Sleep duration and midpoint on weekdays and weekends were assessed using 7-day wrist actigraphy (Actigraph GTX-BT), and DNA methylation in blood leukocytes was measured using the Illumina Infinium Methylation EPIC BeadChip. Linear regression was conducted to assess the relationship between sleep variables and DNA methylation at each array locus, adjusting for demographic confounders, batch effects, and cell types. Differentially methylated regions (DMRs) were assessed using ipDMR, and subsequent pathway analysis of relevant genes was conducted.
Results: At false discovery rate-adjusted p-value (Q)<0.05, there was one inverse site-specific association between sleep midpoint on weekends and cg04070324 (not annotated to a specific gene) among males only (Q=0.02). However, DMR analysis in the full sample revealed 1875 total significant DMRs at Q<0.05, and there was little overlap of DMRs associated with sleep duration versus midpoint. Sex-stratified analysis revealed more associations among males than females (e.g., 3284 DMRs compared to 1346). Based on pathway enrichment analysis, the male-specific pathways for sleep duration were related to DNA and metabolism, whereas for sleep midpoint they were related to developmental processes.
Conclusion: Epigenome-wide analysis identified distinct associations with sleep duration and timing, especially among male adolescents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/sleep/zsaf050 | DOI Listing |
Sci Adv
March 2025
Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
Aortic valve stenosis (AVS) is a progressive disease, wherein males more often develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and produce calcium nanoparticles, driving valve calcification in males.
View Article and Find Full Text PDFPLoS One
March 2025
Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity.
View Article and Find Full Text PDFMol Biotechnol
March 2025
The Third Clinical Medicine College, Ningxia Medical University (People's Hospital of Ningxia Hui Autonomous Region), Yinchuan, 750002, China.
The activity of Wnt inhibitory factor 1 (WIF1) is reduced upon promoter methylation and is involved in cartilage degradation in osteoarthritis. This study aims to investigate the mechanism by which WIF1 methylation is involved in chondrocyte damage in ankylosing spondylitis (AS). A model of chondrocyte inflammatory injury in AS was constructed by stimulation with interleukin (IL)-17.
View Article and Find Full Text PDFEndocr Pathol
March 2025
Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
Neuroendocrine tumors (NET) of the lung constitute a rare entity of primary lung malignancies that often exhibit an indolent clinical course. Epigenetics-related differences have been described previously for lung NET, but the clinical significance remains unclear. In this study, we performed genome-wide methylation analysis using the Infinium MethylationEPIC BeadChip technology on FFPE tissues from lung NET treated at two academic centers.
View Article and Find Full Text PDFArch Dermatol Res
March 2025
Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, 23 Post Street, Nangang District, Harbin, Heilongjiang, 150001, China.
Long non-coding RNA (lncRNA) TINCR has been shown to play a crucial regulatory role in various tumors. However, its specific mechanism of action in cutaneous squamous cell carcinoma (CSCC) remains unclear. This study aimed to explore the role of lncRNA TINCR in CSCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!