Drylands cover one-third of the Earth's surface and are one of the largest terrestrial sinks for methane. Understanding the structure-function interplay between members of arid biomes can provide critical insights into mechanisms of resilience toward anthropogenic and climate-change-driven environmental stressors-water scarcity, heatwaves, and increased atmospheric greenhouse gases. This study integrates in situ measurements with culture-independent and enrichment-based investigations of methane-consuming microbiomes inhabiting soil in the Anza-Borrego Desert, a model arid ecosystem in Southern California, United States. The atmospheric methane consumption ranged between 2.26 to 12.73 μmol m2 h-1, peaking during the daytime at vegetated sites. Metagenomic studies revealed similar soil-microbiome compositions at vegetated and unvegetated sites, with Methylocaldum being the major methanotrophic clade. Eighty-four metagenome-assembled genomes were recovered, six represented by methanotrophic bacteria (three Methylocaldum, two Methylobacter, and uncultivated Methylococcaceae). The prevalence of copper-containing methane monooxygenases in metagenomic datasets suggests a diverse potential for methane oxidation in canonical methanotrophs and uncultivated Gammaproteobacteria. Five pure cultures of methanotrophic bacteria were obtained, including four Methylocaldum. Genomic analysis of Methylocaldum isolates and metagenome-assembled genomes revealed the presence of multiple stand-alone methane monooxygenase subunit C paralogs, which may have functions beyond methane oxidation. Furthermore, these methanotrophs have genetic signatures typically linked to symbiotic interactions with plants, including tryptophan synthesis and indole-3-acetic acid production. Based on in situ fluxes and soil microbiome compositions, we propose the existence of arid-soil reverse chimneys, an empowered methane sink represented by yet-to-be-defined cooperation between desert vegetation and methane-consuming microbiomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ismejo/wraf026 | DOI Listing |
Nanomaterials (Basel)
February 2025
Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
The conversion of carbon dioxide into fuels and fine chemicals is a highly desirable route for mitigating flue gas emissions. However, achieving selectivity toward olefins remains challenging and typically requires high temperatures and pressures. Herein, we address this challenge using 12 nm copper nanoparticles supported on FeOx micro-rods, which promote the selective hydrogenation of CO to light olefins (C-C) under atmospheric pressure.
View Article and Find Full Text PDFNat Commun
March 2025
Institute of Carbon Neutrality, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Ecology, Northeast Forestry University, Harbin, China.
Forest soils, serving as an important sink for atmospheric methane (CH), modulate the global CH budget. However, the direction and magnitude of the forest soil CH sink under warming remain uncertain, partly because the temperature response of microbial CH oxidation varies substantially across geographical scales. Here, we reveal the spatial variation in the response of forest soil microbial CH oxidation to warming, along with the driving factors, across 84 sites spanning a broad latitudinal gradient in eastern China.
View Article and Find Full Text PDFPLoS One
March 2025
Faculty of Civil Engineering and Architecture, Zhanjiang University of Science and Technology, Zhanjiang, Guangdong, China.
The study of the adsorption characteristics of coal is of great significance to gas prevention and CO2 geological storage. To explore the adsorption mechanism of coal, this study focuses on columnar anthracite. Adsorption tests on coal rock under a range of physical field conditions were conducted using the volumetric method.
View Article and Find Full Text PDFLab Chip
March 2025
Department of Chemical and Biomolecular Engineering, New York University, NY 11201, USA.
Atmospheric pressure plasma conversion of methane is usually addressed in gas-only systems, such as dry reforming of methane. Introducing a liquid in such a system enables direct utilization of plasma-produced radicals, such as methyl (CH), as a reactant in the liquid. Methylation of organic liquids by this technique can lead to the sustainable production of high-value products.
View Article and Find Full Text PDFEnviron Microbiol
March 2025
Department of Earth System Science, Stanford University, Stanford, California, USA.
Diazotrophic microorganisms alleviate nitrogen limitation at marine cold seeps using nitrogenase, encoded in part by the gene nifH. Here, we investigated nifH-containing organisms (NCOs) inside and outside six biogeochemically heterogeneous seeps using amplicon sequencing and quantitative real-time PCR (qPCR) of nifH genes and transcripts. We detected nifH genes affiliated with phylogenetically and metabolically diverse organisms spanning 18 bacterial and archaeal phyla (17 within seeps).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!