Although multiphase catalysts with large sizes exhibit excellent recyclability and low toxicity in heterogeneous Fenton reactions, their reactivity, reusability and storage stability for degradation of organic contaminants still need improvement, which is essential for treating complex wastewater and ensuring environmental sustainability. In this study, the waste cotton textiles were firstly used as the carbon source to generate a novel millimeter-sized catalyst (Fe/FeC@HBC) with a honeycomb-like structure, which could effectively activate HO to realize rapid removal of ofloxacin (OFL) (100% in 10 min). It achieved remarkable removal performance across a broad temperature range (4-40 °C) and high-concentration OFL. It even demonstrated excellent removal towards other typical contaminants (Tetracycline, Ciprofloxacin, Methylene Blue, Rhodamine B, Malachite Green), showing outstanding storage stability, physical structural stability, reusability and separation characteristics. Whereafter, its removal mechanism was also explored, showing that it was entirely dependent on the degradation by the reactive oxygen species (ROS), including OH, O and O, as well as the persistent free radicals from the catalyst. Moreover, the honeycomb-like structure promoted the effective utilization of HO, facilitated the generation of OH and expedited the accumulation of OFL on the catalyst surface. Fe/FeC (inside of the catalytic instead of in the reaction solution) was essential for the degradation. Finally, the OFL degradation pathways and toxicity predictions were also proposed. Overall, this innovation supports cleaner water resources and enhances public health, demonstrating a significant step forward in environmental remediation technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.124778DOI Listing

Publication Analysis

Top Keywords

novel millimeter-sized
8
waste cotton
8
cotton textiles
8
storage stability
8
honeycomb-like structure
8
degradation
5
millimeter-sized honeycomb-like
4
honeycomb-like fe/fec@hbc
4
fe/fec@hbc waste
4
textiles rapid
4

Similar Publications

Macroscopically sized supraparticles (SPs) are emerging as cutting-edge materials for industrial applications because of their unique properties unachievable for their nano-building blocks, but their effective methods are lacking. Here, we develop a conceptually novel strategy to assemble binary or ternary nanoparticles (NPs) within compartments of droplets through electrostatic interactions, making it possible to facilely fabricate millimeter-sized multicomponent ionic supraparticles (ISPs). The assembled ISPs possess unexpectedly high mechanical strength (50 N per bead), being amenable to practical applications.

View Article and Find Full Text PDF

Although multiphase catalysts with large sizes exhibit excellent recyclability and low toxicity in heterogeneous Fenton reactions, their reactivity, reusability and storage stability for degradation of organic contaminants still need improvement, which is essential for treating complex wastewater and ensuring environmental sustainability. In this study, the waste cotton textiles were firstly used as the carbon source to generate a novel millimeter-sized catalyst (Fe/FeC@HBC) with a honeycomb-like structure, which could effectively activate HO to realize rapid removal of ofloxacin (OFL) (100% in 10 min). It achieved remarkable removal performance across a broad temperature range (4-40 °C) and high-concentration OFL.

View Article and Find Full Text PDF

In recent years, microfluidic systems have evolved to incorporate increasingly complex multi-layer and multi-material structures. While conventional 2-dimensional microfluidic systems are typically fabricated with lithographic techniques, the increase in system complexity necessitates a more versatile set of fabrication techniques. Similarly, although 3D printing can easily produce intricate microfluidic geometries, integrating multiple membranes and electrode components remains challenging.

View Article and Find Full Text PDF

Nano-catalysts demonstrate exceptional performance in heterogeneous reactions, yet their potential is often underutilized due to a lack of attention to engineering design. In this study, an innovative encapsulated structure is presented for nano-catalysts and a corresponding catalytic system. Using an oil-in-water droplet strategy, millimeter-sized hollow spherical alumina (AlO-HS) is fabricated with an average diameter of ≈3 mm and a hollow void size of ≈1 mm.

View Article and Find Full Text PDF

High-performance, ultra-sensitive, and universal protein post-translational modification (PTM) and protein-protein interaction (PPI) technologies are eagerly pursued in the pharmaceutical industry and bioanalytical research. Novel PTM and PPI detection methods outperform traditional assays in scope and scalability, enabling the collection of information on multiple biochemical targets. Detecting peptides and proteins at the single-molecule level is done by utilizing nanosized transducing elements and assaying solutions at very high analyte concentrations, in the nanomolar range or higher.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!