The European Union (EU) lags in lithium (Li) production despite having substantial resources in pegmatites and rare-metal granites. To address this, the European Commission has encouraged Li mining in Europe. However, there is limited information about the potential environmental and human-health impacts associated with Li mining from these lithologies. In this study, we assess the mobility, solid-phase speciation, and in vitro bioaccessibility of metal(loid)s by combining a series of leaching tests with mineralogical analyses on Li-rich ore and process samples. Despite relatively high concentrations of metal(loid)s such as As, Cr, Ni, and Zn, laboratory leaching tests simulating weathering under environmental conditions reveal generally low mobility for most metal(loid)s, much lower than the reference thresholds. Lithium, for which no threshold values are currently available, exhibits higher mobility (up to ca. 62 mg/kg in the toxicity characteristic leaching procedure) due to the greater alterability of Li minerals. Spatially-resolved mineralogical analyses and pH-dependent leaching tests reveal that metal(loid)s are primarily hosted in sulfides (arsenopyrite, chalcopyrite, sphalerite) and chromite. Detailed in situ mineralogical investigations using LA-ICP-MS demonstrate the presence of metal(loid)s as traces in common silicates (biotite, muscovite) and fluorapatite, underscoring the complexity of metal(loid) solid-phase speciation in these materials. The in vitro oral bioaccessibility of the metal(loid)s is low to moderate (< 35 %). Inverse geochemical modeling indicates that the mobility of metal(loid)s primarily results from the dissolution of silicates and phosphates containing low amounts of metal(loid)s at low pH (0.5-2). The metal(loid) in vitro gastric bioaccessibility also stems from the dissolution of these minerals with low metal(loid) contents. Non-carcinogenic and carcinogenic risk assessments corrected for in vitro bioaccessibility indicate low health risks. However, given the limited knowledge on Li (eco)toxicity, implementing the best practices for tailing managements is warranted to limit human and environmental exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.178992DOI Listing

Publication Analysis

Top Keywords

solid-phase speciation
12
vitro bioaccessibility
12
leaching tests
12
mobility solid-phase
8
speciation vitro
8
metalloids
8
bioaccessibility metalloids
8
mineralogical analyses
8
mobility metalloids
8
metalloids low
8

Similar Publications

The European Union (EU) lags in lithium (Li) production despite having substantial resources in pegmatites and rare-metal granites. To address this, the European Commission has encouraged Li mining in Europe. However, there is limited information about the potential environmental and human-health impacts associated with Li mining from these lithologies.

View Article and Find Full Text PDF

Radionuclide retention by portlandite in the presence of isosaccharinate and phthalate and possible role of ternary complexes.

Chemosphere

April 2025

CIEMAT, Physical Chemistry of Actinides and Fission Products Unit, Avenida Complutense 40, 28040 Madrid Spain. Electronic address:

This research evaluates the retention mechanisms for various radionuclides (RN) specifically, Ni, U, Eu and Pu, on portlandite, in the presence of two organic ligands (ORG): isosaccharinate (ISA) and phthalate (PHTH). The potential negative impact of ORG on RN uptake by the solid phase may arise from two main mechanisms that were analysed: (a) the competitive adsorption of ORG or (b) the formation of RN-ORG complexes in the aqueous phase. The sorption of ISA on portlandite exhibited a maximum log(K) value of 2.

View Article and Find Full Text PDF

Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a.

View Article and Find Full Text PDF

Redox transformation and partitioning of arsenic during the hydrothermal aging of FeS-As coprecipitates under anoxic condition.

J Environ Sci (China)

July 2025

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China. Electronic address:

In sulfidic anoxic environments, iron sulfides are widespread solid phases that play an important role in the arsenic (As) biogeochemical cycle. This work investigated the transformation process of FeS-As coprecipitates, the concurrent behavior, and the speciation of associated As under anoxic conditions. The results showed that FeS-As coprecipitates could convert to greigite and pyrite.

View Article and Find Full Text PDF

Rationale: The complexation with dissolved organic matter (DOM) is a pivotal factor influencing transformations, transport, and bioavailability of mercury (Hg) in aquatic environments. However, identifying these complexes poses a significant challenge because of their low concentrations and the presence of coexisting ions.

Methods: In this study, mercury-dissolved organic matter (Hg-DOM) complexes were isolated through solid-phase extraction (SPE) from Hg-humic acid suspensions, and complexes were putatively identified using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!