Zn-driven metformin conjugated with siRNA attenuates osteoarthritis progression by inhibiting NF-κB signaling and activating autophagy.

Biomaterials

Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.

Published: August 2025

Osteoarthritis (OA) is a type of joint disease that influences millions of individuals. Regrettably, effective treatment for OA is currently unavailable. The challenge lies in the deep location of chondrocytes within the dense cartilage matrix that hinders the delivery and efficiency of clinical OA drugs. To overcome this obstacle, the present study proposed a hybrid nanodrug by Zinc(II) metal-drug coordination-driven self-assembly as highly efficient delivery system. This nano-assembly formulations possessed the ability to deliver two types of drugs, namely metformin (Met) and therapeutic genes (p65 siRNA). Results showed that this nano-assembly not only exhibited positive charge-driven anchoring to the cartilage matrix and effective drug delivery capacity, but also synergistically inhibited NF-κB activity and activates autophagy of OA chondrocytes, thus safeguarding the cartilage. The successful achievement of this project not only contribute to the advancement of research on bio-nanomaterials for treating OA, but also establish a robust theoretical foundation for realizing promising and functional integration of nanomedicine targeting OA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2025.123210DOI Listing

Publication Analysis

Top Keywords

cartilage matrix
8
zn-driven metformin
4
metformin conjugated
4
conjugated sirna
4
sirna attenuates
4
attenuates osteoarthritis
4
osteoarthritis progression
4
progression inhibiting
4
inhibiting nf-κb
4
nf-κb signaling
4

Similar Publications

ZNF667 alleviates the inflammatory damage in intervertebral disc degeneration via inhibiting NF-κB signaling pathway.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China.

Objectives: With the aging population, the incidence of intervertebral disc degeneration (IDD) is increasing every year. The pathogenesis of IDD is complex, and there are currently no effective treatment options. This study aims to investigate the specific function and underlying mechanism of zinc finger protein 667 (ZNF667) in the inflammatory damage of nucleus pulposus cells in IDD.

View Article and Find Full Text PDF

Hydrogel, as the most suitable bio-scaffold material for simulating extracellular matrix, can be used to study the influence of material mechanical properties on cell behavior under 3D conditions. Mechanical stimulation plays an important role in cartilage differentiation, especially for the mechanosensitive cell-bone marrow mesenchymal stem cells (BMSCs). Currently, TRPV4 and Cav1.

View Article and Find Full Text PDF

Chondrocyte ferroptosis plays a crucial role in osteoarthritis (OA) progression. Our previous study demonstrated that TRIM8 knockdown alleviated IL-1β-induced chondrocyte injury. However, the involvement of TRIM8 in regulating OA progression through ferroptosis remains unclear.

View Article and Find Full Text PDF

The activity of Wnt inhibitory factor 1 (WIF1) is reduced upon promoter methylation and is involved in cartilage degradation in osteoarthritis. This study aims to investigate the mechanism by which WIF1 methylation is involved in chondrocyte damage in ankylosing spondylitis (AS). A model of chondrocyte inflammatory injury in AS was constructed by stimulation with interleukin (IL)-17.

View Article and Find Full Text PDF

Chondrocytes in articular cartilage can secrete extracellular matrix to maintain cartilage homeostasis. It is well known that articular cartilage chondrocytes are sensitive to mechanical loading and that mechanical stimuli can be translated to biological processes. This study provides deep insight into the impact of mechanical loading on chondrocytes via single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!