A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanozyme-functionalized microalgal biohybrid microrobots in inflammatory bowel disease treatment. | LitMetric

Nanozyme-functionalized microalgal biohybrid microrobots in inflammatory bowel disease treatment.

Biomaterials

State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China; Medical College, Linyi University, Linyi, 276000, China. Electronic address:

Published: August 2025

Oral drugs are the most direct and effective strategy for the treatment of gastrointestinal diseases. However, the harsh environment of gastric juice, lack of targeted lesion sites, and rapid metabolism present difficulties in the development of oral drugs. This research introduces a nanozyme-functionalized microalgal biohybrid microrobot (Hp@CS-PNAs@PAA) with a novel mechanism for treating inflammatory bowel disease (IBD) by leveraging the therapeutic advantages of microalgae and nanozymes. The microrobot uniquely combines the natural antioxidant capacity of Hematococcus pluvialis (Hp) microalgae and the catalytically active enzyme-mimicking properties of platinum-based nanoparticle assemblies (PNAs), enabling enhanced scavenging of reactive oxygen species (ROS) and targeted anti-inflammatory effects. Through its layered design, the Hp@CS-PNAs@PAA microrobot can navigate the gastrointestinal tract, resist degradation, and target inflamed colon tissues via electrostatic interactions, achieving extended retention and prolonged therapeutic action at inflammation sites. This study demonstrated that the synergistic anti-inflammatory effects of the microrobot derive from its ability to reduce ROS, inhibit proinflammatory cytokines, and promote the expression of tight junction proteins critical for preserving the integrity of the intestinal barrier. Both in vitro and in vivo tests in a DSS-induced colitis mouse model revealed that this system effectively restores damaged tissues by reducing oxidative stress and inflammation, indicating significant potential for clinical application in the management of colitis and similar inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2025.123231DOI Listing

Publication Analysis

Top Keywords

nanozyme-functionalized microalgal
8
microalgal biohybrid
8
inflammatory bowel
8
bowel disease
8
oral drugs
8
anti-inflammatory effects
8
biohybrid microrobots
4
microrobots inflammatory
4
disease treatment
4
treatment oral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!