Plasmodium falciparum-induced malaria remains a fatal disease affecting millions of people worldwide. Mainly, the blood stage of malaria is highly pathogenic and symptomatic, rapidly damaging the host organs and occasionally leading to death. Currently, no vaccines are approved for use against the blood stage of malaria. Canonical vaccines in the past have selected the most immunodominant or essential protein to block the growth of the parasite. This strategy works efficiently for low-complexity organisms such as viruses and a few bacteria but has not shown promising results for a malaria vaccine. Plasmodium has a complex life cycle and vaccine candidates especially during blood stage are ineffective due to multiple gene families showing redundancy, immune evasion, and insufficient antibody titer. Herein, we demonstrate a strategy of combining multiple antigens from the blood stage of Plasmodium falciparum using only the most immunodominant peptide sequences as a way of tackling polymorphism and redundancy. We created three chimeric antigens targeting eight PfEMP1 proteins (chimeric varB) and eight merozoite surface proteins (chimeric MSP and InvP) by selecting and stitching B-cell epitopes. Our chimeric constructs show naturally circulating antibodies against individual peptides using epitope-mapping microarray as well as entire proteins in malaria-infected patients. We demonstrate that anti-varB antibodies are neutralizing in nature and significantly reduce the cytoadhesion on an organ-on-chip system with a microfluidic device mimicking physiological conditions. We have applied a Deep Learning based method to quantify the number of adhered RBCs under fluidic conditions that is used to study cytoadhesion. Furthermore, the anti-MSP and InvP antibodies show complete growth inhibition in a single cycle at a combined concentration of 0.13 mg/ml. Overall, our preliminary results show that a combination of antigenic peptides from multiple antigens can potentially effectively reduce cytoadhesion and clear blood stage infection in in-vitro settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2025.126952DOI Listing

Publication Analysis

Top Keywords

blood stage
24
chimeric antigens
8
antigens effectively
8
stage plasmodium
8
plasmodium falciparum
8
stage malaria
8
multiple antigens
8
proteins chimeric
8
reduce cytoadhesion
8
blood
6

Similar Publications

Objectives: To assess the prognostic impact of adequate lymphadenectomy and determine the optimal nodal assessment for different clinical stages of lung cancer.

Methods: We retrospectively reviewed 1214 patients with clinical stage I-III non-small cell lung cancer who had preoperative PET/CT and curative surgery (2006-2017). Patients were categorized based on whether they had adequate [R0] or inadequate lymphadenectomy [R(un)].

View Article and Find Full Text PDF

Stable colonization of the model kissing bug Rhodnius prolixus by Trypanosoma cruzi Y strain.

PLoS Negl Trop Dis

March 2025

Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America.

Trypanosoma cruzi is a single-celled eukaryotic parasite responsible for Chagas disease, a major cause of morbidity and mortality in Central and South America. While the host-pathogen interactions of T. cruzi have been extensively studied in vertebrate models, investigations into its interactions within its insect host remain limited.

View Article and Find Full Text PDF

Background: Treatment of non-small cell lung cancer (NSCLC) remains challenging; 5-year survival is as low as 24% for resectable disease. However, the outlook for stage IA NSCLC is favorable, with 5-year survival exceeding 74% and with surgery often being curative. Despite this positive prognosis, low socioeconomic status has been shown to correlate with nonstandard treatment and worse overall survival specifically in stage IA.

View Article and Find Full Text PDF

Aim: The incidence of intrahepatic distant recurrence (IDR) of hepatocellular carcinoma (HCC) still remains high after radiofrequency ablation (RFA). However, serum alpha-fetoprotein (AFP) has insufficient screening power. This study aimed to identify risk factors for IDR in patients with post-RFA HCC.

View Article and Find Full Text PDF

Immunity and neuroinflammation in early stages of life and epilepsy.

Epilepsia

March 2025

Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.

The immune system is crucial for the correct brain development, and recent findings also point toward central control of immune response. As the immune system is not fully developed at birth, the early years become an important window for infections and for the development of epilepsy. Both central and even peripheral inflammation may impact brain function, promoting opening of the blood-brain/blood and cerebrospinal barriers and allowing entry of immune cells and cytokines, which in turn may affect neuron function and connections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!