Human breath analysis; Clinical application and measurement: An overview.

Biosens Bioelectron

Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia; School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia. Electronic address:

Published: December 2024

Human breath has been recognized as a complex yet predictive mixture of volatile organic compounds (VOCs) and inorganic gas species that can be utilized to non-invasively diagnose common diseases. Current laboratory techniques such as gas chromatography/mass spectrometry (GC/MS) and high-performance liquid chromatography (HPLC), are capable of VOC detection down to ppm concentrations. However, these methods are expensive, non-portable, require pre-processing of the exhaled VOCs, and expert operators, making them unsuitable for wide-spread use. Portable gas sensors have various advantages over other methods used in gas analysis, including ease of transportation, reduced treatment costs, fast results, and improved patient experience. Recent advancements in gas sensing technologies have enabled such devices to be used to diagnose, predict, and monitor a wide range of diseases and conditions, however, many challenges need still need to be addressed (i.e., sensitivity and selectivity) before they can be employed for such applications. Although nanotechnology has greatly improved the performance of gas sensor materials and their capacity to detect VOCs in human breath, issues around repeatability and accuracy remain, as well as adequateness due to the close proximity of the human body and the sensor device. This review focuses on how recent advancements in nanotechnology and solid-state materials have enabled VOC gas sensors to evolve into miniaturized, sensitive and selective devices for monitoring human breath in clinical applications. An introduction to the key aspects of breath analysis, including sources of VOCs in human breath and their role in disease diagnosis, is discussed. Furthermore, the current limitations and future prospects of such gas sensors for breath monitoring applications are also discussed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2024.117094DOI Listing

Publication Analysis

Top Keywords

human breath
20
gas sensors
12
breath analysis
8
gas
8
analysis including
8
vocs human
8
human
6
breath
6
analysis clinical
4
clinical application
4

Similar Publications

Background: Amyotrophic lateral sclerosis (ALS) leads to rapid physiological and functional decline before causing untimely death. Current best-practice approaches to interdisciplinary care are unable to provide adequate monitoring of patients' health. Passive in-home sensor systems enable 24×7 health monitoring.

View Article and Find Full Text PDF

Offspring exposed to metformin treatment for gestational diabetes mellitus (GDM) experience altered growth patterns that increase the risk for developing cardiometabolic diseases later in life. The adaptive cellular mechanisms underlying these patterns remain unclear. Therefore, the objective of this study was to determine if chronic metformin exposure associated with GDM treatment elicits infant cellular metabolic adaptations.

View Article and Find Full Text PDF

This study aimed to assess whether delivering Continuous Positive Airway Pressure (CPAP) through a Helmet interface (H-CPAP) reduces common carotid artery flow (CCAF), compared to breathing room air (RA) or using an oronasal mask (M-CPAP). This trial is an unblinded, randomized, controlled crossover trial. The primary outcome was CCAF, measured using Doppler ultrasound.

View Article and Find Full Text PDF

Rumination Syndrome, Supragastric Belching, and Abdominophrenic Dyssynergia: How to Diagnose and Treat?

Curr Gastroenterol Rep

March 2025

Division of Digestive and Liver Disease, Columbia University Irving Medical Center, 630 West 168th St, Physician and Scientist Floor 3, Box 83, New York, NY, 10032, USA.

Purpose Of Review: Supragastric belching (SGB), rumination syndrome (RS), and abdominophrenic dyssynergia are often misunderstood and underdiagnosed syndromes. Better understanding of these conditions is needed to increase recognition and guide treatment.

Recent Findings: Diagnosis is typically made by history and physical examination though supplementary evaluations can be considered in difficult to diagnose cases.

View Article and Find Full Text PDF

Cellular metabolism must adapt rapidly to environmental alterations and adjust nutrient uptake. Low glucose availability activates the AMP-dependent kinase (AMPK) pathway. We demonstrate that activation of AMPK or the downstream Unc-51-like autophagy-activating kinase (ULK1) inhibits receptor-mediated endocytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!