Background: The rapid evolution of metagenomic sequencing technology offers remarkable opportunities to explore the intricate roles of microbiome in host health and disease, as well as to uncover the unknown structure and functions of microbial communities. However, the swift accumulation of metagenomic data poses substantial challenges for data analysis. Contamination from host DNA can substantially compromise result accuracy and increase additional computational resources by including nontarget sequences.
Results: In this study, we assessed the impact of computational host DNA decontamination on downstream analyses, highlighting its importance in producing accurate results efficiently. We also evaluated the performance of conventional tools like KneadData, Bowtie2, BWA, KMCP, Kraken2, and KrakenUniq, each offering unique advantages for different applications. Furthermore, we highlighted the importance of an accurate host reference genome, noting that its absence negatively affected the decontamination performance across all tools.
Conclusions: Our findings underscore the need for careful selection of decontamination tools and reference genomes to enhance the accuracy of metagenomic analyses. These insights provide valuable guidance for improving the reliability and reproducibility of microbiome research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878760 | PMC |
http://dx.doi.org/10.1093/gigascience/giaf004 | DOI Listing |
J Immunol
February 2025
Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Greifswald-Isle of Riems, Germany.
African swine fever virus (ASFV) is a large DNA virus of the Asfarviridae family that causes a fatal hemorrhagic disease in domestic swine and wild boar. Infections with moderately virulent strains predominantly result in a milder clinical course and lower lethality. As target cells of ASFV, monocytes play a crucial role in triggering T-cell-mediated immune defense and ASF pathogenesis.
View Article and Find Full Text PDFJ Gen Virol
March 2025
Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
Bacilladnaviruses are single-stranded DNA viruses that infect diatoms that, so far, have been primarily identified in marine organisms and environments. Using a viral metagenomics approach, we discovered 13 novel bacilladnaviruses originating from samples of mud-flat snail (; =3 genomes) and benthic sediments (=10 genomes) collected from the Avon-Heathcote Estuary in New Zealand. Comparative genomics and phylogenetic analysis of the new bacilladnavirus sequences in the context of the previously classified members of the family helped refine and further expand the taxonomy.
View Article and Find Full Text PDFExp Appl Acarol
March 2025
Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, Wrocław, 50-335, Poland.
This study reports on the first documented case of Amblyomma rotundatum ticks, a species typically found in the Americas, parasitising an imported toad in Poland. A total of 12 ticks were collected from a single Rhinella marina toad. These ticks were identified as female specimens of A.
View Article and Find Full Text PDFJ Virol
March 2025
Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan.
Sputnik virophages are small double-stranded DNA (dsDNA) viruses that replicate only inside host amoebae infected with giant dsDNA viruses, mimiviruses. Sputnik infection affects mimivirus replication, but their molecular interaction remains poorly understood. Here, we performed a time-course transcriptome analysis of cells infected with Acanthamoeba polyphaga mimivirus (APMV; hereafter referred to as Sputnik cells) and those infected with both APMV and Sputnik 3 virophage (Sputnik cells).
View Article and Find Full Text PDFEur J Immunol
March 2025
Blacktown Clinical School, Western Sydney University, Sydney, NSW, Australia.
Bacteriophages (phages) are emerging as a viable adjunct to antibiotics for the treatment of multidrug-resistant (MDR) bacterial infections. While intravenous phage therapy has proven successful in many cases, clinical outcomes remain uncertain due to a limited understanding of host response to phages. In this study, we conducted a comprehensive examination of the interaction between clinical-grade phages used to treat MDR Escherichia coli and Klebsiella pneumoniae infections, and human peripheral blood immune cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!