Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The influence of guest stacking interactions in host-guest (H-G) MOF composites on third-order nonlinear optical (NLO) performance remains largely unknown. Herein, we propose for the first time a noncovalent aggregate confinement strategy for synthesizing H-G MOF composites with different guest stacking modes. And [perylene] (α-Pe) and [perylene] (β-Pe) were selected as guests and confined into a novel Ca-based MOF {[Ca(TBAPy)(DMA)]·3DMA·[N(CH)]·HO} (Ca-MOF-pts). The NLO results showed that compared to β-Pe@Ca-MOF-pts, the saturable absorption (SA) and self-defocusing properties of α-Pe@Ca-MOF-pts were increased by 2.71-fold and 3.82-fold, respectively. Interestingly, α/β-Pe@Ca-MOF-pts can be transformed into α/β-Pe@Ca-MOF-flu (Ca-MOF-flu = {[Ca(TBAPy)(HO)]·DMA·[N(CH)]·2HO}) through self-adaptive topological evolution, and the corresponding NLO absorption signal change from SA to reverse saturable absorption (RSA). As expected, compared to β-Pe@Ca-MOF-flu, the RSA and self-defocusing properties of α-Pe@Ca-MOF-flu are improved by 2.94-fold and 4.07-fold, respectively, demonstrating the importance of guest stacking modes. Theoretical calculation and transient absorption spectra indicated the enhancement of NLO performance was attributed to the large π-π overlap of α-Pe, which promoted the electron delocalization/transfer and optimized the cross-sectional of the ground state and excited state. This study provides a new strategy for developing H-G MOF composites with excellent NLO properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5c00081 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!