A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiononq9tirom7iogqass1n6jjoi4of0ciba): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiview Clustering via Block Diagonal Graph Filtering. | LitMetric

Graph-based multiview clustering methods have gained significant attention in recent years. In particular, incorporating graph filtering into these methods allows for the exploration and utilization of both feature and topological information, resulting in a commendable improvement in clustering accuracy. However, these methods still exhibit several limitations: 1) the graph filters are predetermined, which disconnects the link with subsequent clustering tasks and 2) the separability of the filtered features is poor, which may not be suitable for the clustering. To mitigate these aforementioned issues, we propose Multiview Clustering via Block Diagonal Graph Filtering (MvC-BDGF), which can learn cluster-friendly graph filters. Specifically, the block diagonal graph filter with localized characteristics, which could make the filtered features very discriminating, is innovatively designed. The MvC-BDGF model seamlessly integrates the learning of graph filters with the acquisition of consensus graphs, forming a unified framework. This integration allows the model to obtain optimal filters and simultaneously acquire corresponding clustering labels. To solve the optimization problem in the MvC-BDGF model, an iterative solver based on the coordinate descent method is devised. Finally, a large number of experiments on benchmark datasets fully demonstrate the effectiveness and superiority of the proposed model. The code is available at https://github.com/haonanxin/MvC-BDGF_code.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2025.3543219DOI Listing

Publication Analysis

Top Keywords

multiview clustering
12
block diagonal
12
diagonal graph
12
graph filtering
12
graph filters
12
clustering block
8
filtered features
8
mvc-bdgf model
8
graph
7
clustering
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!