A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The response of soil eukaryotic microbial communities to afforestation in mountainous area of the Loess Plateau, Northern China. | LitMetric

Soil microorganisms are integral to nutrient cycling, ecosystem functioning, and soil restoration. However, the information on the response of soil eukaryotic microbial communities to land-use transformations, particularly for afforestation, remains underexplored in the mountainous region of northwest Shanxi on the Loess Plateau. The study based on high-throughput sequencing of 18S rRNA sequences, elucidated the impact of afforestation on soil eukaryotic microbial communities in this ecologically sensitive region. The findings indicated that afforestation significantly altered the composition of soil eukaryotic microbial communities. The dominant eukaryotic phyla were Streptophyta (16.8%-46.9%) and Ascomycota (20.5%-40.7%). At the genus level, Gymnoascus, Preussia, Mortierella, Chaetomium and Fusarium were biomarkers of soil eukaryotic microbes in farmland soil, while unidentified Streptophyta and Geopora were enriched in plantations soil. The result of non-metric multidimensional scaling (NMDS) analysis shows significant separation between eukaryotic microbial communities in farmland and plantation soils, which significantly correlated with soil temperature (T), nitrate nitrogen (NN) and available phosphorus (AP). These findings provided data support on regional ecological restoration assessments, highlighted the effect of soil physicochemical factors on the composition of soil eukaryotic microbial communities, and enhanced our understanding of the role of afforestation in modifying soil microbial ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878901PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317235PLOS

Publication Analysis

Top Keywords

soil eukaryotic
24
eukaryotic microbial
24
microbial communities
24
soil
12
response soil
8
eukaryotic
8
loess plateau
8
composition soil
8
microbial
7
communities
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!