Aims: Dicarbonyl compounds such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) are present in numerous foods. They are pro-inflammatory and pro-oxidative, but their potential role in cardiovascular disease (CVD) development has been scarcely studied. We explored associations between dietary dicarbonyls with fatal and non-fatal CVD.
Methods And Results: We conducted a case-cohort analysis based on 32 873 subjects drawn from 346 055 participants of the multi-national prospective EPIC cohort. Cases (15 863 subjects) were CVD-free at baseline and later developed CVD [coronary heart disease (CHD) and/or stroke] with non-fatal (n CVD = 17 837; n CHD = 12 003; n stroke = 6791; not mutually exclusive) and/or fatal (n CVD = 2894; n CHD = 2284; n stroke = 908) outcomes. Dietary intake of dicarbonyl compounds was estimated using country-specific questionnaires linked to a food composition database of dicarbonyl compounds. Multivariable prentice weighted Cox proportional hazards regression models were used to estimate hazard ratios (HRs) and 95% CIs for incident non-fatal and fatal CVD. The main food sources of dicarbonyl compounds include cereals, sugar and confectionaries, coffee, fruits, and vegetables. Higher dietary dicarbonyl intakes were inversely associated with non-fatal CVD (per 1 SD increase, GO: HR = 0.95, 95% CI 0.92-0.98; 3-DG: HR = 0.95, 95% CI 0.92-0.98), fatal CVD (MGO: HR = 0.92, 95% CI 0.87-0.97; GO: HR = 0.91, 0.86-0.96; 3-DG: HR = 0.93, 0.86-0.99), non-fatal CHD (3-DG: HR = 0.95, 0.92-0.99), non-fatal stroke (MGO: HR = 0.93, 95% CI 0.90-0.96; GO: HR = 0.90, 95% CI 0.86-0.95; 3-DG: HR = 0.92, 95% CI 0.89-0.96), and fatal CHD (MGO: HR = 0.94, 95% CI 0.88-0.99; GO: HR = 0.92, 0.86-0.98; 3-DG: HR = 0.89, 0.82-0.96).
Conclusion: Higher intakes of dietary MGO, GO, and 3-DG intake are associated with lower risk of non-fatal or fatal CVD. Further research is required to confirm these findings, assess circulating levels of dicarbonyls, and explore potential underlying mechanisms for their observed CVD risk associations.
Lay Summary: Dicarbonyl compounds are known to promote oxidative stress, inflammation, endothelial dysfunction, and vascular complications. They are formed endogenously in the body as a byproduct in glucose metabolism but are also present in some foods during food preparation and processing. We studied the role of three major dicarbonyl compounds coming from foods on cardiovascular diseases using data from the prospective EPIC cohort, which includes over 520 000 participants from 10 European countries.We observed that higher consumption of dietary dicarbonyl compounds resulted in a lower risk of non-fatal or fatal CVD.Our findings highlight the need to better understand the roles of these dietary compounds along with their potential underlying mechanisms of action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/eurjpc/zwaf060 | DOI Listing |
J Pharmacol Sci
April 2025
Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, 108-8641, Japan. Electronic address:
Methylglyoxal (MGO), a highly reactive dicarbonyl compound produced via the glycolytic pathway, plays a key role in the pathogenesis of various diabetic complications, such as diabetic retinopathy. Müller cells provide neurotrophic support and maintain retinal homeostasis, including the redox balance. This dysfunction leads to retinal disease.
View Article and Find Full Text PDFJ Biol Chem
March 2025
Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA. Electronic address:
Advanced glycation end products (AGEs) are protein modifications resulting from the chemical reaction between lysine and arginine residues in proteins, and carbonyl compounds, including glyoxal (GO) and methylglyoxal (MGO). N-carboxymethyllysine (CML) and N-carboxyethyllysine (CEL), formed by glycation from GO and MGO, are among the major AGEs in tissue proteins. Incubation with GO or MGO resulted in higher CML and CEL formation in two cysteine residues containing αA-crystallin (αAC) than in cysteine lacking αB-crystallin (αBC).
View Article and Find Full Text PDFEur J Prev Cardiol
February 2025
Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 25 Avenue Tony Garnier, 90627 69366 LYON CEDEX 07, Lyon, France.
Aims: Dicarbonyl compounds such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) are present in numerous foods. They are pro-inflammatory and pro-oxidative, but their potential role in cardiovascular disease (CVD) development has been scarcely studied. We explored associations between dietary dicarbonyls with fatal and non-fatal CVD.
View Article and Find Full Text PDFComb Chem High Throughput Screen
March 2025
Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran.
Background: Benzoimidazo[1,2-a]pyrimidines are important compounds that have many useful effects in the body. They can help fight cancer, fungal infections, inflammation, and viruses. They can also help with various other health conditions.
View Article and Find Full Text PDFFood Res Int
March 2025
Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea. Electronic address:
This study aims to investigate the volatile and α-dicarbonyl compounds (α-DCs) formed in Maillard reactions between 2'-fucosyllactose (2'-FL) and amino acids, with the goal of exploring their potential as flavoring agents and enhancing food quality and safety. The effects of pH, temperature, reaction time, and amino acid concentration on α-DC production were evaluated. Fucose generated the most α-DCs, whereas 2'-FL produced the least.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!