The processing of coffee consists on the separation of the grains from other parts of the fruit, then roasted and extracted to obtain the beverage that is so appreciated worldwide. Several studies have dedicated efforts to treat the residue from coffee processing, while recovering lignols of industrial interest. Given this scenario, the nutrients in the coffee husk can enhance microbial growth, providing optimal conditions for the microorganisms to produce metabolites that may have medicinal properties. Deep eutectic solvents (DES) are a class of solvents and/or catalysts designed on demand for specific uses, being used to enhance extraction processes of coffee husk. Our present study was successful establishing conditions where the coffee husk enhanced the growth of microorganisms from two Brazilian biomes, the endophytic fungus from Cerrado and the actinomycete, from Atlantic Rainforest in Boraceia, São Paulo. The DES composed by ChCl/LA (1:10) was selected as cosolvent for the extraction, while it also optimized microbial cultivation conditions. Coffee husk was an excellent supplement for culture media, once the fungus FE316 produced Fumiquinazoline A, Tripprostatin B and Pseurotin A, while the actinomycete AC154 produced Trichorozin-IV as metabolites only expressed when in addition to the coffee husk. UHPLC-MS/MS analysis enabled the annotation of lignin monomer compounds, such as alkaloids, phenylpropanoids and terpenoids present in the coffee husk, more specifically, caffeic acid, isochlorogenic acid B, chlorogenic acid and coniferyl aldehyde, underscoring the value of this biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2025.2464266 | DOI Listing |
Environ Technol
March 2025
Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil.
The processing of coffee consists on the separation of the grains from other parts of the fruit, then roasted and extracted to obtain the beverage that is so appreciated worldwide. Several studies have dedicated efforts to treat the residue from coffee processing, while recovering lignols of industrial interest. Given this scenario, the nutrients in the coffee husk can enhance microbial growth, providing optimal conditions for the microorganisms to produce metabolites that may have medicinal properties.
View Article and Find Full Text PDFFoods
January 2025
Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil.
Coffee and cocoa agribusinesses generate large volumes of byproducts, including coffee husk, coffee pulp, parchment skin, silver skin, and cocoa bean shell. Despite the rich composition of these materials, studies on biomolecule extraction with green solvents are still scarce, and further research is needed. Extraction methods using alternative solvents to obtain biomolecules must be developed to enhance the byproducts' value and align with biorefinery concepts.
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil. Electronic address:
This research investigated the influence of the microencapsulation of phenolic compounds (PCs) from organic coffee husk with whey protein concentrate (WPC) and maltodextrin on the abundance of intestinal bacterial populations and their metabolic activity during in vitro fecal fermentation. The microencapsulated PCs were gradually metabolized during fecal fermentation, resulting in significant transformations and an increase in PCs in the fermentation media. The metabolism of PCs by the fecal microbiota occurred concurrently with the consumption of sugars, production of organic acids, and reduction in pH in the media.
View Article and Find Full Text PDF<b>Background and Objective:</b> Laccase as a ligninolytic enzyme has been known for its green-catalysis mechanism, which has the potential to be applied to food industries. Lignocellulose found in agro-industrial waste is promising for laccase production as a substrate, that could be encountered in pineapple (<i>Ananas comosus</i>) and Arabica coffee (<i>Coffea arabica</i>) industrial residue. To boost enzyme activity, laccase characterization was performed using <i>Ganoderma lucidum</i> under solid-state fermentation.
View Article and Find Full Text PDFHeliyon
January 2025
Transmission Electronic Microscopy Laboratory, Electronic Microscopy Unit, Department of Biology, University of Cauca, Popayán, 190002, Colombia.
A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!