Tylenchulus semipenetrans is a soil-borne pathogen that causes substantial damage and economic losses to citrus crops worldwide. Due to the high toxicity of chemical nematicides to humans and the environment, biocontrol bacteria have emerged as a promising alternative for managing citrus nematodes. This study aimed to screen bacterial strains for their efficacy to control T. semipenetrans and assess their impact on citrus plant growth. A total of 107 bacterial strains were isolated from the soil and roots of infested citrus trees. Among these, five strains exhibited significant nematicidal activity against T. semipenetrans. Four bacterial densities were tested for each strain: 3.6 × 10, 2.5 × 10, 3.6 × 10, and 1.2 × 10 cells/ml. These strains were tested both individually and in combination to evaluate their efficacy. The five strains were identified as Variovorax paradoxus, Bacillus pseudomycoides, Bacillus simplex, Bacillus cereus, and Paracoccus speluncae based on physiological, biochemical, and molecular (16S rRNA gene sequences) analyses. Juvenile mortality (J2s) and egg hatching inhibition were positively correlated with bacterial concentration and exposure duration. The highest juvenile mortality (100%) was observed with a combination of all five bacteria (3.6 × 10 cells/ml) after 96 h, while B. cereus alone achieved 98.98% mortality. The maximum nematicidal activities of the bacterial filtrates were generally observed between the 4th and 6th days of incubation, coinciding with peak bacterial growth and biomass production. The selected isolates also demonstrated the ability to produce indole acetic acid and solubilize phosphorus. In greenhouse experiments, the five isolates reduced T. semipenetrans populations by up to 62.96% compared to the control. Additionally, all rhizosphere bacteria and their combination significantly enhanced plant growth parameters (p < 0.0001). Notably, P. speluncae BR21 has not previously been tested for nematicidal effects on any nematode, making this the first documented report of its nematicidal potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10123-025-00652-9 | DOI Listing |
Int Microbiol
March 2025
Center of Agrobiotechnology and Bioengineering, Research Unit Labeled CNRST, Cadi Ayyad University, Marrakech, Morocco.
Tylenchulus semipenetrans is a soil-borne pathogen that causes substantial damage and economic losses to citrus crops worldwide. Due to the high toxicity of chemical nematicides to humans and the environment, biocontrol bacteria have emerged as a promising alternative for managing citrus nematodes. This study aimed to screen bacterial strains for their efficacy to control T.
View Article and Find Full Text PDFPest Manag Sci
February 2025
Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
Background: Tylenchulus semipenetrans, the causal agent of citrus slow decline disease, is one of the most destructive plant-parasitic nematodes in all citrus-growing regions of the world, causing significant reductions in citrus growth and yield. Accurate and rapid detection of T. semipenetrans is critical for the diagnosis and effective control of the disease.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
This study investigates the nematicidal efficacy of strain (AUMC 10620) combined with avermectin (B1a and B1b) against the citrus nematode , both in vitro and in vivo. Laboratory experiments tested four concentrations of (2.5, 5, 10, and 15 × 10 spores/mL) mixed with 250 ppm avermectin, assessing their effects on nematode juveniles (J2) and eggs.
View Article and Find Full Text PDFJ Nematol
March 2024
Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
Molecular data should be combined with morphological data to enhance the reliability of phylogenetic and diagnostic studies on nematodes. In this study, the citrus nematode collected from citrus orchards in different localities in Fars province, southern Iran, was characterized using the partial sequencing of ITS rDNA, D2-D3 of 28S rDNA and COI mtDNA genes. We also morphometrically characterized the second-stage juveniles (J2) and male specimens.
View Article and Find Full Text PDFTree Physiol
September 2024
Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran PO Box 14115-336, Iran.
Using integrated pest management without relying on chemical pesticides is one of the most attractive approaches to controlling plant pathogens. Among them, using resistant cultivars or rootstocks against diseases in combination with beneficial microorganisms has attracted special attention. The citrus nematode is one of the major constraints of citrus cultivation worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!