Recent events involving nerve agents of the A-Series, a once elusive class of chemical warfare agents, have provoked a great concern in the international community. In this paper, continuing our research efforts in Medicinal Chemistry at the Brazilian Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) (an OPCW-designated Laboratory for environmental samples), we explore ANMP, an A-230 surrogate, in the search for new treatment options for intoxications caused by these chemicals. Five isatin-pyridine oxime hybrids were evaluated as acetylcholinesterase (AChE) reactivators using a modified Ellman's assay. Our results indicate that monocationic hybrids with five methylene units, as well as its oxa-analog, are promising compounds for the design of new AChE reactivators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-025-03976-7 | DOI Listing |
Arch Toxicol
March 2025
Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (Ctex), Av. das Américas 28705, Área 4, Rio de Janeiro-RJ, 23020-470, Brazil.
Recent events involving nerve agents of the A-Series, a once elusive class of chemical warfare agents, have provoked a great concern in the international community. In this paper, continuing our research efforts in Medicinal Chemistry at the Brazilian Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) (an OPCW-designated Laboratory for environmental samples), we explore ANMP, an A-230 surrogate, in the search for new treatment options for intoxications caused by these chemicals. Five isatin-pyridine oxime hybrids were evaluated as acetylcholinesterase (AChE) reactivators using a modified Ellman's assay.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2021
Brazilian Army Technological Center (CTEx), Institute of CBRN Defense (IDQBRN), Rio de Janeiro, Brazil.
Organophosphorus poisoning caused by some pesticides and nerve agents is a life-threating condition that must be swiftly addressed to avoid casualties. Despite the availability of medical countermeasures, the clinically available compounds lack a broad spectrum, are not effective towards all organophosphorus toxins, and have poor pharmacokinetics properties to allow them crossing the blood-brain barrier, hampering cholinesterase reactivation at the central nervous system. In this work, we designed and synthesised novel isatin derivatives, linked to a pyridinium 4-oxime moiety by an alkyl chain with improved calculated properties, and tested their reactivation potency against paraoxon- and NEMP-inhibited acetylcholinesterase in comparison to the standard antidote pralidoxime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!