Vascular smooth muscle cells (VSMC) are the most abundant cell type in the artery's media layer and regulate vascular tone and lesion remodeling during atherogenesis. Like monocyte-derived macrophages, VSMCs accumulate excess lipids and contribute to the total intimal foam cell population in human coronary plaques and mouse aortic atheroma. While there are extensive studies characterizing the contribution of lipid metabolism in macrophage immunometabolic responses in atherosclerotic plaques, the role of VSMC lipid metabolism in regulating vascular function and lesion remodeling in vivo remains poorly understood. Here, we report that the liver X receptor (LXR) signaling pathway in VSMC is continuously activated during atherogenesis. Notably, we found that LXR deficiency in SMCs under hypercholesterolemic conditions influenced lesion remodeling by altering the fate of dedifferentiated SMCs and promoting the accumulation of VSMC-derived transitional cells. This phenotypic switching was accompanied by reduced indices of plaque stability, characterized by a larger necrotic core area and reduced fibrous cap thickness. Moreover, SMC-specific LXR deficiency impaired vascular function and caused visceral myopathy characterized by maladaptive bladder remodeling and gut lipid malabsorption. Mechanistically, we found that the expression of several genes involved in cholesterol efflux and FA synthesis including , , , , and was downregulated in mice lacking LXRαβ in SMCs, likely contributing to the phenotypic switching of VSMC in the atherosclerotic lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1073/pnas.2417512122 | DOI Listing |
Cells
February 2025
Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland.
Endometriosis is a chronic, estrogen-dependent gynecological disorder characterized by the presence of endometrial-like tissue outside the uterine cavity. Despite its prevalence and significant impact on women's health, the underlying mechanisms driving the invasive and migratory behavior of endometriotic cells remain incompletely understood. Actin-binding proteins (ABPs) play a critical role in cytoskeletal dynamics, regulating processes such as cell migration, adhesion, and invasion, all of which are essential for the progression of endometriosis.
View Article and Find Full Text PDFComput Biol Med
March 2025
Institute for Computational Mechanics, Technical University of Munich, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, Germany.
Coronary angioplasty with stent implantation is the most frequently used interventional treatment for coronary artery disease. However, reocclusion within the stent, referred to as in-stent restenosis, occurs in up to 10% of lesions. It is widely accepted that mechanical loads on the vessel wall strongly affect adaptive and maladaptive mechanisms.
View Article and Find Full Text PDFWorld J Cardiol
February 2025
Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China.
Percutaneous coronary intervention (PCI), as an essential treatment for coronary artery disease, has significantly improved the prognosis of patients with large coronary artery lesions. However, some patients continue to experience myocardial ischemic symptoms post-procedure, largely due to coronary microvascular dysfunction (CMD). The pathophysiological mechanisms of CMD are complex and involve endothelial dysfunction, microvascular remodeling, reperfusion injury, and metabolic abnormalities.
View Article and Find Full Text PDFBackground: Trimethylamine-N-oxide (TMAO) has been significantly linked to atherosclerosis via several mechanisms, but its direct effect on the atherosclerosis-prone vasculature remains unclear. The objective of this study was to characterize the cell type-dependent and independent effects of TMAO on key vascular cell types involved in atherosclerosis progression .
Methods: We performed single cell RNA-sequencing (scRNAseq) on aortic athero-prone regions of female mice fed control Chow, high-cholesterol (HC), or HC+TMAO diets for three months to identify which aortic cell types, differentially expressed genes, and biological pathways are affected by TMAO.
Acta Biomater
March 2025
Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China. Electronic address:
The anti-tumor efficacy of radiotherapy (RT) is limited by the hypoxic and immunosuppressive tumor microenvironment (TME), which leads to RT resistance and failure in eradicating distant metastatic lesions. Herein, we developed a fluorinated nanosensitizer that could deliver both oxygen (O) and ADAR1 siRNA into tumor cells to reinforce RT by alleviating hypoxia and immunosuppression. Fluorinated poly(β-amino ester) (fPBAE) was designed to complex ADAR1 siRNA (siADAR1) via electrostatic attraction and load O due to the O-dissolving capacity of fluoroalkyls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!