Bri2 BRICHOS, a folded domain of the transmembrane protein Bri2 expressed in both the brain and pancreas, is an experimentally known substoichiometric inhibitor of amyloid aggregation. The molecular chaperone effectively delays fibrillization at low molar ratios for both β-amyloid (Aβ) in Alzheimer's disease (AD) and islet amyloid polypeptide (IAPP) in type 2 diabetes (T2D). While discovering effective antiamyloid inhibitors that work at low doses is an appealing strategy to mitigate amyloid toxicity, the molecular mechanism underlying the broad and efficient antiamyloid activity of Bri2 BRICHOS remains unknown. Here, we computationally demonstrated that Bri2 BRICHOS exhibits a stronger binding affinity to fibril seeds than to monomers using atomistic discrete molecular dynamic simulations. By competing with monomers to bind the active elongation sites on newly nucleated, weakly populated fibril seeds, a small amount of Bri2 BRICHOS could block rapid fibril growth via monomer addition. The experimentally observed differential inhibition efficiency against IAPP and Aβ aggregation was found to depend on the relative fibril-binding affinities of the inhibitor compared to those of self-seeding monomers. Our computationally derived determinants for substoichiometric inhibition against amyloid aggregation by Bri2 BRICHOS may inform the future design of potent antiamyloid therapies for AD, T2D, and other amyloid diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.4c00839 | DOI Listing |
ACS Chem Neurosci
March 2025
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.
Bri2 BRICHOS, a folded domain of the transmembrane protein Bri2 expressed in both the brain and pancreas, is an experimentally known substoichiometric inhibitor of amyloid aggregation. The molecular chaperone effectively delays fibrillization at low molar ratios for both β-amyloid (Aβ) in Alzheimer's disease (AD) and islet amyloid polypeptide (IAPP) in type 2 diabetes (T2D). While discovering effective antiamyloid inhibitors that work at low doses is an appealing strategy to mitigate amyloid toxicity, the molecular mechanism underlying the broad and efficient antiamyloid activity of Bri2 BRICHOS remains unknown.
View Article and Find Full Text PDFTransl Psychiatry
October 2024
Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
Treatment strategies that are efficient against established Alzheimer's disease (AD) are needed. BRICHOS is a molecular chaperone domain that prevents amyloid fibril formation and associated cellular toxicity. In this study, we treated an AD mouse model seven months after pathology onset, using intravenous administration of recombinant human (rh) Bri2 BRICHOS R221E.
View Article and Find Full Text PDFJ Chem Inf Model
October 2024
Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.
The aggregation of amyloid-β (Aβ) into amyloid fibrils is the major pathological hallmark of Alzheimer's disease (AD). Aβ fibrils can adopt a variety of morphologies, the relative populations of which are recently found to be associated with different AD subtypes such as familial and sporadic AD (fAD and sAD, respectively). The two AD subtypes differ in their ages of onset, AD-related genetic predispositions, and dominant Aβ fibril morphologies.
View Article and Find Full Text PDFProtein Sci
August 2024
Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
Protein misfolding and aggregation are involved in several neurodegenerative disorders, such as α-synuclein (αSyn) implicated in Parkinson's disease, where new therapeutic approaches remain essential to combat these devastating diseases. Elucidating the microscopic nucleation mechanisms has opened new opportunities to develop therapeutics against toxic mechanisms and species. Here, we show that naturally occurring molecular chaperones, represented by the anti-amyloid Bri2 BRICHOS domain, can be used to target αSyn-associated nucleation processes and structural species related to neurotoxicity.
View Article and Find Full Text PDFProtein Sci
July 2024
Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
Proteins can misfold into fibrillar or amorphous aggregates and molecular chaperones act as crucial guardians against these undesirable processes. The BRICHOS chaperone domain, found in several otherwise unrelated proproteins that contain amyloidogenic regions, effectively inhibits amyloid formation and toxicity but can in some cases also prevent non-fibrillar, amorphous protein aggregation. Here, we elucidate the molecular basis behind the multifaceted chaperone activities of the BRICHOS domain from the Bri2 proprotein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!