With the recent upsurge of data-driven technology, the demand for storage elements has pushed the researchers to explore design of nobel nonvolatile memory devices with diverse functionalities. However, the management of electronic waste has become a prominent challenge due to the rapid growth of the solid-state electronics industry. Biomaterial-based Resistive Random Access Memory (Bio-RRAM) has become one of the most promising devices that can augment the quality of memory devices because of their environmentally benign behavior, biocompatible, nontoxic, transient, transferable, flexible, dissolvable, and biodegradable nature. In this work, we report the fabrication of MIM-structured RRAM devices based on two biomaterials, namely, ovalbumin liquid and acemannan polysaccharide gel, as switching layers. Further, they are characterized by several analytical techniques. The electrical transport measurement revealed bipolar resistive switching behavior, sustainable over 1000 consecutive cycles. The devices demonstrated supreme endurance over 1000 switching cycles with a maximum ON/OFF ratio of ∼10-10. The switching process can be explained through the formation and rupture of conducting filaments formed by the migration of Ag ions. Design of neuro-memristive synapse has been further been explored to demonstrate various neuromorphic functionalities such as long/short-term potentiation, depression, and plasticity. Due to simultaneous presence of resistive switching with the negative differential resiatance (NDR) effect, remarkable endurance, ease of fabrication, cost reduction, and environmental compatibility, neuromorphic functionalities, the RRAM structures could be of potential interest for bioelectronic memory design, wearable and flexible electronics and neuromorphic computing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c01645DOI Listing

Publication Analysis

Top Keywords

bioelectronic memory
8
memory devices
8
resistive switching
8
neuromorphic functionalities
8
memory
5
devices
5
switching
5
transparent biomaterial-based
4
biomaterial-based nonvolatile
4
nonvolatile bioelectronic
4

Similar Publications

Biocompatible Neuromorphic Device Array Based on Naturally Sourced Mucin for Implantable Bioelectronics.

ACS Nano

March 2025

School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

Although the demand for intelligent implantable bioelectronics is steadily increasing, their progress is hindered by the limited availability of materials with sufficient biocompatibility for implantation. Herein, we propose a neuromorphic device with human brain-inspired biomimetic functionality utilizing naturally sourced mucin as the active layer material. The mucin-based neuromorphic memristor (MNM) array successfully mimics key synaptic behaviors uniformly, including a paired-pulse facilitation index of 122.

View Article and Find Full Text PDF

Real-time monitoring and evaluation of muscle atrophy are vital for efficient treatment and effective diagnosis. Although some systems have been developed to monitor loss of muscle mass or strength, they are bulky and nonspecific, cannot be applied to the body, and cannot assess the degree of muscle atrophy. Our research focuses on developing a wireless multisensor wearable system (WMWS) for on-body monitoring and assessment of atrophy, which utilizes a single-electrode triboelectric nanogenerator (S-TENG) and electrochemical creatinine (CREA) sensor to achieve real-time acquisition of plantar pressure and interstitial fluid (ISF) CREA concentration.

View Article and Find Full Text PDF

With the recent upsurge of data-driven technology, the demand for storage elements has pushed the researchers to explore design of nobel nonvolatile memory devices with diverse functionalities. However, the management of electronic waste has become a prominent challenge due to the rapid growth of the solid-state electronics industry. Biomaterial-based Resistive Random Access Memory (Bio-RRAM) has become one of the most promising devices that can augment the quality of memory devices because of their environmentally benign behavior, biocompatible, nontoxic, transient, transferable, flexible, dissolvable, and biodegradable nature.

View Article and Find Full Text PDF

Organic Artificial Nerves: Neuromorphic Robotics and Bioelectronics.

Chem Rev

March 2025

Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.

Neuromorphic electronics are inspired by the human brain's compact, energy-efficient nature and its parallel-processing capabilities. Beyond the brain, the entire human nervous system, with its hierarchical structure, efficiently preprocesses complex sensory information to support high-level neural functions such as perception and memory. Emulating these biological processes, artificial nerve electronics have been developed to replicate the energy-efficient preprocessing observed in human nerves.

View Article and Find Full Text PDF

Recent advances in tannic acid-based gels: Design, properties, and applications.

Adv Colloid Interface Sci

May 2025

College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China. Electronic address:

With the flourishing of mussel-inspired chemistry, the fast-growing development for environmentally friendly materials, and the need for inexpensive and biocompatible analogues to PDA in gel design, TA has led to its gradual emergence as a research focus due to its remarkable biocompatible, renewable, sustainable and particular physicochemical properties. As a natural building block, TA can be used as a substrate or crosslinker, ensuring versatile functional polymeric networks for various applications. In this review, the design of TA-based gels is summarized in detail (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!