Mixotrophy via phagocytosis can have profound consequences for the survival of marine phytoplankton and the efficiency of carbon transfer in marine systems. Little is known about the cellular mechanisms that underly nutrient acquisition via prey uptake and processing in mixotrophic phytoplankton. We used confocal microscopy, flow cytometry, and electron microscopy to assess phagocytosis and intracellular prey processing in the diploid calcifying coccolithophore Scyphosphaera apsteinii. Bioinformatic analysis was performed to develop a working model of the pathways that likely converge to regulate mixotrophic nutrition and autophagy. We found cells ingested proxy (up to 2 μm diameter) and natural (bacteria and cyanobacteria) prey particles that are processed within a single, prominent acidic vacuole detected in 80-100% of cells during exponential growth. This organelle was constitutive in cells through all growth phases to late stationary and is inherited when cells divide. Chloroplast fragments localized to this digestive organelle. A distinct, nonacidic vacuole containing polyphosphate was also identified in cells with ingested particles. We conclude a novel acidic organelle plays a multifunctional catabolic role in both mixotrophic nutrition (phagotrophy) and autophagy (chlorophagy). This discovery illustrates the dynamic nutritional strategies that marine phytoplankton, such as coccolithophores, have evolved to acquire and conserve nutrients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.20388 | DOI Listing |
New Phytol
March 2025
Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC, 28403, USA.
Mixotrophy via phagocytosis can have profound consequences for the survival of marine phytoplankton and the efficiency of carbon transfer in marine systems. Little is known about the cellular mechanisms that underly nutrient acquisition via prey uptake and processing in mixotrophic phytoplankton. We used confocal microscopy, flow cytometry, and electron microscopy to assess phagocytosis and intracellular prey processing in the diploid calcifying coccolithophore Scyphosphaera apsteinii.
View Article and Find Full Text PDFJ Plankton Res
June 2024
Department of Earth Sciences, University of Oxford, South Parks Road, OX1 3AN, UK.
The coccolithophore produces distinct coccolith morphotypes and offers a unique insight into coccolith calcification, as the number of lopadoliths per cell increases under low light intensities. This study employs to investigate the acclimated impact of light intensity and wavelength on cell physiology and coccosphere morphology. Our findings reveal a marked increase in lopadolith production when grown under reduced light intensity, with lower growth rates, higher chlorophyll concentration and elevated net photosynthetic rates.
View Article and Find Full Text PDFSci Rep
February 2024
Department of Ocean Systems, NIOZ Royal - Netherlands Institute for Sea Research, Den Burg, The Netherlands.
Atmospheric dust deposition can modulate the earth's climate and atmospheric CO through fertilising the ocean (nutrient source) and by accelerating the biological carbon pump through fuelling the ballasting process. To distinguish the biogeochemical effects of Saharan dust with respect to fertilization and ballasting, and to gain a broader perspective on the coccolith calcite Sr/Ca in relation to the drivers of coccolith export production, we determined the coccolith-Sr/Ca from a one-year (2012-2013) time-series sediment trap record in the western tropical North Atlantic (M4-49°N/12°W). High Sr/Ca were linked to enhanced export production in the upper part of the photic zone, most notably under windier, dry, and dustier conditions during spring.
View Article and Find Full Text PDFEnviron Sci Process Impacts
June 2024
Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
Coccolithophores are biogeochemically and ecologically important phytoplankton that produce a composite calcium carbonate-based exoskeleton - the coccosphere - comprised of individual platelets, known as coccoliths. Coccoliths are stunning examples of biomineralization; their formation featuring exceptional control over both biomineral chemistry and shape. Understanding how coccoliths are formed requires information about minor element distribution and chemical environment.
View Article and Find Full Text PDFJ Phycol
February 2023
Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.
The calcite platelets of coccolithophores (Haptophyta), the coccoliths, are among the most elaborate biomineral structures. How these unicellular algae accomplish the complex morphogenesis of coccoliths is still largely unknown. It has long been proposed that the cytoskeleton plays a central role in shaping the growing coccoliths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!