The ability to balance between being persistent versus flexible during cognitive control is referred to as "metacontrol" and reflected in the exponent of aperiodic neural activity. Theoretical considerations suggest that metacontrol is affected by the interplay of the GABAergic, glutamatergic, and catecholaminergic systems. Moreover, evidence suggests that fronto-striatal structures play an important role. Yet, the nexus between neurobiochemistry and structural neuroanatomy when it comes to the foundations of metacontrol is not understood. To examine this, we investigated how an experimental manipulation of catecholaminergic signaling via methylphenidate (MHP) and baseline levels of GABA and glutamate in the anterior cingulate cortex (ACC), supplementary motor area (SMA), and striatum as assessed via MR spectroscopy altered task performance and associated aperiodic activity (assessed via EEG) during a conflict monitoring task. We investigated N = 101 healthy young adults. We show that the EEG-aperiodic exponent was elevated during task performance, as well as during cognitively challenging task conditions requiring more persistent processing and was further enhanced by MPH administration. Correlation analyses also provided evidence for an important role of individual characteristics and dispositions as reflected by the observed role of GABA+ and Glx baseline levels in the ACC, the SMA, and the striatum. Our observations point to an important role of catecholamines in the amino acid neurotransmitter-driven regulation of metacontrol and task-specific (changes in) metacontrol biases. The results suggest an interplay of the GABA/Glx and the catecholaminergic system in prefrontal-basal ganglia structures crucial for metacontrol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877340PMC
http://dx.doi.org/10.1002/hbm.70173DOI Listing

Publication Analysis

Top Keywords

gaba+ glx
8
baseline levels
8
sma striatum
8
task performance
8
metacontrol
6
catecholaminergic
4
catecholaminergic modulation
4
modulation metacontrol
4
metacontrol reflected
4
reflected aperiodic
4

Similar Publications

The ability to balance between being persistent versus flexible during cognitive control is referred to as "metacontrol" and reflected in the exponent of aperiodic neural activity. Theoretical considerations suggest that metacontrol is affected by the interplay of the GABAergic, glutamatergic, and catecholaminergic systems. Moreover, evidence suggests that fronto-striatal structures play an important role.

View Article and Find Full Text PDF

The Reciprocal Relationship Between Short- and Long-Term Motor Learning and Neurometabolites.

Hum Brain Mapp

March 2025

Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium.

Skill acquisition requires practice to stimulate neuroplasticity. Changes in inhibitory and excitatory neurotransmitters, such as gamma-aminobutyric acid (GABA) and glutamate, are believed to play a crucial role in promoting neuroplasticity. Magnetic resonance spectroscopy (MRS) at 3 T, using the MEGA-PRESS sequence, and behavioral data were collected from 62 volunteers.

View Article and Find Full Text PDF

Studies have shown gamma-amino-butyric acid (GABA) and Glx (a combination of glutamate and glutamine) to be altered in major depressive disorder (MDD). Using proton Magnetic Resonance Spectroscopy (H-MRS), this study aimed to determine whether lower pretreatment GABA and Glx levels in the medial frontal cortex, a region implicated in MDD pathophysiology, are associated with better antidepressant treatment response. Participants with MDD (N = 74) were antidepressant naïve or medication-free for at least three weeks before imaging.

View Article and Find Full Text PDF

Correlated and Anticorrelated Binocular Disparity Modulate GABA+ and Glutamate/glutamine Concentrations in the Human Visual Cortex.

eNeuro

February 2025

Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom, OX3 9DU,

Binocular disparity is used for perception and action in three dimensions. Neurons in the primary visual cortex respond to binocular disparity in random dot patterns, even when the contrast is inverted between eyes (false depth cue). In contrast, neurons in the ventral stream largely cease to respond to false depth cues.

View Article and Find Full Text PDF

The present study aimed to evaluate the association between concentrations of the metabolites gamma-aminobutyric acid (GABA) and glutamate/glutamine (Glx), which have predominantly inhibitory and excitatory effects on neural function, respectively, in adults with tinnitus and hearing loss, those with only hearing loss, and controls with neither condition. Metabolite concentrations in all three participant groups were assessed via magnetic resonance spectroscopic imaging in auditory and fronto-parietal regions. The concentration of a third metabolite, creatine (Cre) was also acquired.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!