The Reciprocal Relationship Between Short- and Long-Term Motor Learning and Neurometabolites.

Hum Brain Mapp

Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium.

Published: March 2025

Skill acquisition requires practice to stimulate neuroplasticity. Changes in inhibitory and excitatory neurotransmitters, such as gamma-aminobutyric acid (GABA) and glutamate, are believed to play a crucial role in promoting neuroplasticity. Magnetic resonance spectroscopy (MRS) at 3 T, using the MEGA-PRESS sequence, and behavioral data were collected from 62 volunteers. Participants completed a 4-week protocol, practicing either complex (n = 32) or simple (n = 30) bimanual tracking tasks (BTT). Neurotransmitter levels and skill levels at baseline, after 2 and 4 weeks of motor training were compared for the left and right primary sensorimotor cortex (SM1) and the left dorsal premotor cortex (PMd). Furthermore, task-related modulations of neurotransmitter levels in the left PMd were assessed. The study yielded that baseline neurotransmitter levels in motor-related brain regions predicted training success. Furthermore, lower GABA+ (p = 0.0347) and higher Glx (glutamate + glutamine compound) levels (p = 0.0234) in left PMd correlated with better long-term learning of simple and complex tasks, respectively, whereas higher GABA+ in right SM1 correlated with complex task learning (p = 0.0064). Resting neurometabolite levels changed during the intervention: Left SM1 Glx decreased with complex training toward Week 4 (p = 0.0135), whereas right SM1 Glx was increased at Week 2 (p = 0.0043), regardless of training type. Group-level analysis showed no task-related neurometabolite modulation in the left PMd. However, individual baseline GABA+ and Glx modulation influenced short-term motor learning (interaction: p = 0.0213). These findings underscore the importance of an interplay between inhibitory and excitatory neurotransmitters during motor learning and suggest potential for future personalized approaches to optimize motor learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877351PMC
http://dx.doi.org/10.1002/hbm.70170DOI Listing

Publication Analysis

Top Keywords

motor learning
16
neurotransmitter levels
12
left pmd
12
inhibitory excitatory
8
excitatory neurotransmitters
8
sm1 glx
8
learning
6
levels
6
left
6
motor
5

Similar Publications

Objectives: To examine the effect of integrated motor learning clinical pilates protocol we developed for patients with Parkinson's Disease (pwPD) on providing enduring motor skills in walking, balance, reaction time, cadence, and functional mobility at 3-months follow-up.

Design: A parallel-group, randomized controlled trial (RCT).

Setting: XXX Medical Center, XXX, and XXX Physiotherapy and Rehabilitation Center, Nicosia.

View Article and Find Full Text PDF

Families' experiences and perspectives on the early use of powered mobility in children with spinal muscular atrophy type I in the natural context.

Disabil Rehabil Assist Technol

March 2025

Faculty of Physiotherapy and Nursing. Department of Nursing, Physiotherapy and Occupational Therapy, Universidad de Castilla-La Mancha, Toledo, Spain.

Purpose: To describe the experiences of parents who used powered mobility in children with Spinal Muscular Atrophy, SMA type I,at an early age in the natural context like a family-centered program, using inductive qualitative content analysis.

Materials And Methods: This qualitative study was embedded within a single-blinded randomized waiting list controlled clinical trial, which involved 16 children with SMA type I. This study specifically explores the experiences of the 9 parents whose children participated in the intervention group and completed the training.

View Article and Find Full Text PDF

Toward autonomous event-based sensorimotor control with supervised gait learning and obstacle avoidance for robot navigation.

Front Neurosci

February 2025

Department of Electrical and Computer Engineering (ECE), Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States.

Miniature robots are useful during disaster response and accessing remote or unsafe areas. They need to navigate uneven terrains without supervision and under severe resource constraints such as limited compute, storage and power budget. Event-based sensorimotor control in edge robotics has potential to enable fully autonomous and adaptive robot navigation systems capable of responding to environmental fluctuations by learning new types of motion and real-time decision making to avoid obstacles.

View Article and Find Full Text PDF

Parameter optimization of 3D convolutional neural network for dry-EEG motor imagery brain-machine interface.

Front Neurosci

February 2025

Department of Precision Machinery Engineering, College of Science and Technology, Nihon University, Funabashi, Chiba, Japan.

Easing the behavioral restrictions of those in need of care not only improves their own quality of life (QoL) but also reduces the burden on care workers and may help reduce the number of care workers in countries with declining birthrates. The brain-machine interface (BMI), in which appliances and machines are controlled only by brain activity, can be used in nursing care settings to alleviate behavioral restrictions and reduce stress for those in need of care. It is also expected to reduce the workload of care workers.

View Article and Find Full Text PDF

Introduction: The onset of locomotion is a critical motor milestone in early childhood and increases engagement with the environment. Toddlers with neurodevelopmental disabilities often have atypical motor development that impacts later outcomes. Video-based gait analysis using pose estimation offers an alternative to standardized motor assessments which are subjective and difficult to ascertain in some populations, yet very little work has been done to determine its accuracy in young children.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!