Objective: To investigate high-risk factors for gestational diabetes mellitus (GDM) in early pregnancy through an analysis of demographic and clinical data, and to develops a machine-learning-based prediction model to enhance early diagnosis and intervention.
Methods: A retrospective study was performed involving 942 pregnant women. A stacking ensemble (machine learning [ML]) was applied to demographic and clinical variables, creating a predictive model for GDM. Model performance was evaluated through receiver-operating characteristics (ROC) analysis, and the area under the curve (AUC) was calculated. Risk stratification was performed using quartile-based probability thresholds, and predictive accuracy was validated using an independent dataset.
Results: Significant predictors for GDM included age, pre-pregnancy body mass index (BMI; calculated as weight in kilograms divided by the square of height in meters), history of GDM, family history of diabetes, history of fetal macrosomia, education level, history of hypertension, and gravidity. These factors, which can be collected non-invasively at the first prenatal visit, formed the basis of a robust predictive model (AUC = 0.89). The model demonstrated a strong ability to exclude GDM, at a threshold of 28.53%.
Conclusions: The machine-learning-based prediction model effectively identifies populations at high risk for GDM before invasive testing and oral glucose tolerance test, facilitating early clinical intervention and resource optimization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijgo.70055 | DOI Listing |
J Environ Qual
March 2025
College of Science, Inner Mongolia University of Technology, Hohhot, China.
Climate change, driven by greenhouse gas emissions, has emerged as a pressing global ecological and environmental challenge. Our study is dedicated to exploring the various factors influencing greenhouse gas emissions from animal husbandry and predicting their future trends. To this end, we have analyzed data from China's Inner Mongolia Autonomous Region spanning from 1978 to 2022, aiming to estimate the carbon emissions associated with animal husbandry in the region.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China.
The relationship between the structure and function of condensed matter is complex and changeable, which is especially suitable for combination with machine learning to quickly obtain optimized experimental conditions. However, little research has been done on the effect of temperature on condensed matter and how it affects device performance because the difference between the in situ physical property parameters (which are lowered by the surface tension and mixing entropy) and the basic parameters of the bulk makes accurate AI predictions difficult. In this work, P3HT/ITIC was chosen as the donor/acceptor material for the active layer of organic phototransistors (OPTs).
View Article and Find Full Text PDFAust N Z J Public Health
February 2025
Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health & Biosecurity, Adelaide, South Australia 5000, Australia. Electronic address:
Objective: In Australia, 'improving access to and the consumption of a healthy diet' is a focus in the National Preventive Health Strategy. The objective of this paper is to describe the past trends and future projections of population intakes against the Strategy's targets of increasing fruit consumption to 2 servings per day; increasing vegetables to 5 servings; and reducing discretionary foods to <20% of total energy by 2030.
Methods: Self-reported intake data were available from an online survey of 275,170 Australian adults collected between 2015 and 2023.
J Clin Lipidol
February 2025
Fatty Acid Research Institute, Sioux Falls, SD, USA (Drs Tintle, Marchioli, and Harris); Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA (Dr Harris).
Background: Accurate predictive tools are crucial for identifying patients at increased risk for atherosclerotic cardiovascular disease (ASCVD). The Pooled Cohort Equation (PCE) is commonly used to predict 10-year risk for ASCVD, but its accuracy remains imperfect.
Objective: This study examined the extent to which the omega-3 index (O3I; the proportion of eicosapentaenoic acid+docosahexaenoic acid in erythrocyte membranes) improved the predictive capability of PCE.
J Gastroenterol Hepatol
March 2025
Department of Radiology, Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China.
This review provides an in-depth exploration of the evolving role of immunotherapy in gastrointestinal (GI) cancers, with a particular focus on immune checkpoint inhibitors (ICIs) and their associated predictive biomarkers. We present a detailed analysis of established biomarkers, such as PD-L1, microsatellite instability (MSI), tumor mutational burden (TMB), and the tumor microenvironment (TME), as well as emerging biomarkers, including gut microbiota and Epstein-Barr virus (EBV). The predictive value of these biomarkers in guiding clinical decision-making and optimizing immunotherapy outcomes is thoroughly discussed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!