A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning to predict dementia for American Indian and Alaska native peoples: a retrospective cohort study. | LitMetric

Machine learning to predict dementia for American Indian and Alaska native peoples: a retrospective cohort study.

Lancet Reg Health Am

Department of Epidemiology & Biostatistics, Joe C. Wen School of Population & Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, 856 Health Sciences Quad, Irvine, CA 92697-7550, USA.

Published: March 2025

Background: Dementia is an increasing concern among American Indian and Alaska Native (AI/AN) communities, yet machine learning models utilizing electronic health record (EHR) data have not been developed or validated for this population. This study aimed to develop a two-year dementia risk prediction model for AI/AN individuals actively using Indian Health Service (IHS) and Tribal health services.

Methods: Seven years of data were obtained from the IHS National Data Warehouse and related EHR databases and divided into a five-year baseline period (FY2007-2011) and a two-year dementia prediction period (FY2012-2013). Four algorithms were assessed: logistic regression, Least Absolute Shrinkage and Selection Operator (LASSO), random forest, and eXtreme Gradient Boosting (XGBoost). Dementia Risk Score (DRS)-based and extended models were developed for each algorithm, with performance evaluated by the area under the receiver operating characteristic curve (AUC).

Findings: The study cohort included 17,398 AI/AN adults aged ≥ 65 years who were dementia-free at baseline, of whom 59.8% were female. Over the two-year follow-up, 611 individuals (3.5%) were diagnosed with incident dementia. Extended models for logistic regression, LASSO, and XGBoost performed comparably: AUCs (95% CI) of 0.83 (0.79, 0.86), 0.83 (0.79, 0.86), and 0.82 (0.79, 0.86). These top-performing models shared 12 of the 15 highest-ranked predictors, with novel predictors including service utilization.

Interpretation: Machine learning algorithms utilizing EHR data can effectively predict two-year dementia risk among AI/AN older adults. These models could aid IHS and Tribal health clinicians in identifying high-risk individuals, facilitating timely interventions and improved care coordination.

Funding: NIH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875197PMC
http://dx.doi.org/10.1016/j.lana.2025.101013DOI Listing

Publication Analysis

Top Keywords

machine learning
12
two-year dementia
12
dementia risk
12
079 086
12
american indian
8
indian alaska
8
alaska native
8
ehr data
8
ihs tribal
8
tribal health
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!