Introduction: MSCs exhibit regenerative, anti-inflammatory and immunomodulatory properties due to the large amount of cytokines, chemokines and growth factors they secrete. MSCs have been extensively evaluated in clinical trials, however, in some cases their therapeutic effects are variable. Therefore, strategies to improve their therapeutic potential, such as preconditioning with proinflammatory factors, have been proposed. Several priming approaches have provided non-conclusive results, and the duration of priming effects on MSC properties or their response to a second inflammatory stimulus have not been fully addressed.
Methods: We have investigated the impact of triple cytokine priming in MSCs on their characterization and viability, their transcriptomic profile, the functionality of innate and acquired immune cells, as well as the maintenance of the response to priming over time, their subsequent responsiveness to a second inflammatory stimulus.
Results: Priming MSCs with proinflammatory cytokines (CK-MSCs) do not modify the differentiation capacity of MSCs, nor their immunophenotype and viability. Moreover, cytokine priming enhances the anti-inflammatory and immunomodulatory properties of MSCs against NK and dendritic cells, while maintaining the same T cell immunomodulatory capacity as unstimulated MSCs. Thus, they decrease T-lymphocytes and NK cell proliferation, inhibit the differentiation and allostimulatory capacity of dendritic cells and promote the differentiation of monocytes with an immunosuppressive profile. In addition, we have shown for the first time that proinflammatory priming reduces the variability between different donors and MSC origins. Finally, the effect on CK-MSC is maintained over time and even after a secondary inflammatory stimulus.
Conclusions: Cytokine-priming improves the therapeutic potential of MSCs and reduces inter-donor variability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872697 | PMC |
http://dx.doi.org/10.3389/fimmu.2025.1473788 | DOI Listing |
Front Immunol
March 2025
People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
Cardiovascular disease (CVD) continues to be the leading cause of mortality worldwide. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in numerous types of CVD. As part of innate immunity, the NLRP3 inflammasome plays a vital role, requiring priming and activation signals to trigger inflammation.
View Article and Find Full Text PDFEur J Microbiol Immunol (Bp)
March 2025
2Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
B-cells serve as a niche for Salmonella to establish a chronic infection, enabling bacteria to evade immune responses. One mechanism Salmonella uses to survive inside B-cells involves inhibiting the NLRC4 inflammasome activation, thereby preventing pyroptotic cell death. This study investigates whether Salmonella-infected B-cells can mount bactericidal responses to control intracellular bacteria.
View Article and Find Full Text PDFSci Immunol
March 2025
Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
Photosensitivity is observed in numerous autoimmune diseases and drives poor quality of life and disease flares. Elevated epidermal type I interferon (IFN) production primes for photosensitivity and enhanced inflammation, but the substrates that sustain and amplify this cycle remain undefined. We show that IFN-induced Z-DNA binding protein 1 (ZBP1) stabilizes ultraviolet (UV) B-induced cytosolic Z-DNA derived from oxidized mitochondrial DNA.
View Article and Find Full Text PDFIran J Allergy Asthma Immunol
February 2025
Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
Human cytomegalovirus glycoprotein B (gB) emerges as a viable candidate for eliciting neutralizing antibodies. This research specifically focused on exploring the immune reaction prompted by the nonglycosylated variant of the gB, with a comprehensive assessment of humoral immunity in mice. The gB coding sequence was optimized and expressed in pET-15b.
View Article and Find Full Text PDFJ Immunother Cancer
March 2025
Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
Background: The efficacy of immune checkpoint blockade (ICB) depends on restoring immune recognition of cancer cells that have evaded immune surveillance. Transforming growth factor-beta (TGFβ) is associated with immune-poor, so-called cold tumors whereas loss of its signaling promotes DNA misrepair that could stimulate immune response.
Methods: We analyzed transcriptomic data from IMvigor210, The Cancer Genome Atlas, and Tumor Immune Syngeneic MOuse data sets to evaluate the predictive value of high βAlt, a score representing low expression of a signature consisting of TGFβ targets and high expression of genes involved in error-prone DNA repair.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!