Generative AI, molecular docking and molecular dynamics simulations assisted identification of novel transcriptional repressor EthR inhibitors to target .

Heliyon

SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru, 560041, India.

Published: February 2025

Tuberculosis (TB) remains a persistent global health threat, with (Mtb) continuing to be a leading cause of mortality worldwide. Despite efforts to control the disease, the emergence of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) TB strains presents a significant challenge to conventional treatment approaches. Addressing this challenge requires the development of novel anti-TB drug molecules. This study employed de novo drug design approaches to explore new EthR ligands and ethionamide boosters targeting the crucial enzyme InhA involved in mycolic acid synthesis in Mtb. Leveraging REINVENT4, a modern open-source generative AI framework, the study utilized various optimization algorithms such as transfer learning, reinforcement learning, and curriculum learning to design small molecules with desired properties. Specifically, focus was placed on molecule optimization using the Mol2Mol option, which offers multinomial sampling with beam search. The study's findings highlight the identification of six promising compounds exhibiting enhanced activity and improved physicochemical properties through structure-based drug design and optimization efforts. These compounds offer potential candidates for further preclinical and clinical development as novel therapeutics for TB treatment, providing new avenues for combating drug-resistant TB strains and improving patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874554PMC
http://dx.doi.org/10.1016/j.heliyon.2025.e42593DOI Listing

Publication Analysis

Top Keywords

development novel
8
drug design
8
generative molecular
4
molecular docking
4
docking molecular
4
molecular dynamics
4
dynamics simulations
4
simulations assisted
4
assisted identification
4
identification novel
4

Similar Publications

Herein, a novel and simple electrospray (ES) printing technique was developed for the fabrication of ultrathin graphene layers with precisely controlled nanometer-scale thickness, where graphene oxide (GO) was electrosprayed on wafers and subsequently chemically reduced into reduced GO (rGO). Utilizing that technique, we prepared ultrathin rGO in-plane graphene field-effect transistor (GFET)-based biosensors coupled with a portable prototype measuring system for point-of-care detection of pathogens. We illustrate the use of such prepared GFETs to detect COVID-19, using the SARS-CoV-2 nucleocapsid protein antigen (N-protein) and genomic viral RNA as detection targets.

View Article and Find Full Text PDF

AI-Driven Discovery of Highly Specific and Efficacious hCES2A Inhibitors for Ameliorating Irinotecan-Triggered Gut Toxicity.

J Med Chem

March 2025

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

The anticancer agent irinotecan often induces severe delayed-onset diarrhea, inhibiting human carboxylesterase 2A (hCES2A) can significantly alleviate irinotecan-triggered gut toxicity (ITGT). This work presents an efficient workflow for design and developing novel efficacious hCES2A inhibitors. A well-training machine learning model identified as a lead compound, while compound was developed as a novel time-dependent hCES2A inhibitor (IC = 0.

View Article and Find Full Text PDF

Rechargeable magnesium batteries (RMBs) exhibit significant potential in large-scale energy storage due to their features of high volumetric capacity, resistance to dendrite formation, and abundant magnesium resources. However, the high polarity of divalent Mg2+ ions results in sluggish diffusion kinetics in conventional inorganic cathode materials, adversely affecting reversible capacity and rate performance. Organic materials such as pyrene-4,5,9,10-tetrone (PTO) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), achieve rapid and reversible intercalation of magnesium ions through carbonyl enolization, but these materials are challenged by high cost, complex preparation, and poor environmental friendliness.

View Article and Find Full Text PDF

Background: Plant-based milk alternatives (PBMA) are increasingly popular due to rising lactose intolerance and environmental concerns over traditional dairy products. However, limited efforts have been made to develop rapid authentication methods to verify their biological origin.

Objective: In this study, we developed a rapid, on-site analytical method for the authentication and identification of PBMA made by six different plant species utilizing a portable Raman spectrometer coupled with machine learning.

View Article and Find Full Text PDF

Current Strategies in Regional Anesthesia for Shoulder Surgery.

J Am Acad Orthop Surg

March 2025

From the Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, MD (Zhang and Murthi), and the Department of Anesthesiology, St. Francis Hospital and Medical Center, Hartford, CT (Sinha).

As arthroscopic and open shoulder surgery is increasingly performed on an outpatient basis, optimal and prolonged pain control is becoming more important while minimizing associated adverse effects. Traditional analgesic strategies relying on opioid and nonopioid medications provide inadequate pain control and are associated with undesirable adverse effects, such as opioid-related adverse effects (postoperative nausea and vomiting, respiratory depression, sedation), gastric lining irritation, and renal and hepatic adverse effects. Advances in ultrasonography-guided regional anesthesia have made placement of interscalene brachial plexus nerve blocks more reliable and precise and aided development of novel phrenic nerve-sparing peripheral nerve block techniques that decrease the risk of diaphragmatic paresis and dyspnea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!