The dilated cardiomyopathy with ataxia (DCMA) syndrome is a rare mitochondrial disorder caused by mutations in the poorly understood DNAJC19 gene. Cardiac involvement in DCMA ranges from mild conduction abnormalities to early severe myocardial dysfunction. Although evidence suggests that DCMA is linked to abnormalities in mitochondrial function, the molecular underpinnings of this condition are unclear, and there is no way to predict which patients will develop life-threatening disease. To address this, we developed a metabolic flux assay for assessing the metabolic function of mitochondria in fibroblasts derived from DCMA patients. Using this approach, we discovered that DCMA fibroblasts have elevated glutamine uptake, increased glutamate and ammonium secretion, and elevated lactate production. Moreover, we observed that these cellular perturbations were closely correlated with cardiac dysfunction in a blinded cohort of patient cell lines. These findings suggest that glutamine catabolism is abnormal in DCMA and may serve as a predictor of clinical progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876715PMC
http://dx.doi.org/10.1002/jimd.70018DOI Listing

Publication Analysis

Top Keywords

cardiac dysfunction
8
dcma
7
altered fibroblast
4
fibroblast glutamine
4
glutamine metabolism
4
metabolism linked
4
linked severity
4
severity cardiac
4
dysfunction dcma
4
dcma mitochondrial
4

Similar Publications

A global treatment algorithm was developed for the endovascular revascularization of femoropopliteal lesions and chronic total occlusions, aiming toward a more standardized approach to endovascular treatment in patients with peripheral artery disease. The following steps are proposed. 1) Evaluation of lesion morphology based on preprocedural imaging by Duplex sonography and intravenous ultrasound for selection of lesion preparation tools.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a hallmark in the pathogenesis of various cardiovascular diseases. 5-Methoxytryptophan (5-MTP), an intrinsic amino acid metabolite, exerts cardioprotective effects potentially through the preservation of mitochondrial integrity. This study investigates the mechanisms and contexts in which 5-MTP positively impacts mitochondrial function using cultured human ventricular cardiomyocytes (HCMs) and HL-1 cardiac cells subjected to oxidative stress (OS).

View Article and Find Full Text PDF

Trimethylamine N-oxide induces cardiac diastolic dysfunction by down-regulating Piezo1 in mice with heart failure with preserved ejection fraction.

Life Sci

March 2025

Department of Physiology, Hebei Medical University, 050017, Hebei, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, 050017, Hebei, China; Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, 050017, Hebei, China. Electronic address:

Aims: The present study aimed to investigate the direct link between trimethylamine N-oxide (TMAO) and diastolic dysfunction in heart failure with preserved ejection fraction (HFpEF).

Materials And Methods: Diastolic dysfunction is the main manifestation of HFpEF, so the "two-hit" mouse HFpEF model are used. After treated with high-fat diet (HFD) and N-nitro-l-arginine methyl ester (L-NAME) for 8 weeks, the cardiac function, myocardial fibrosis, oxidative stress levels, and molecular alterations were assessed.

View Article and Find Full Text PDF

Pyruvate dehydrogenase kinase 1 controls triacylglycerol hydrolysis in cardiomyocytes.

J Biol Chem

March 2025

Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. Electronic address:

Pyruvate dehydrogenase kinase (PDK) 1 is one of four isozymes that inhibit the oxidative decarboxylation of pyruvate to acetyl-CoA via pyruvate dehydrogenase. PDK activity is elevated in fasting or starvation conditions to conserve carbohydrate reserves. PDK has also been shown to increase mitochondrial fatty acid utilization.

View Article and Find Full Text PDF

Organelle interplay in cardiovascular diseases: Mechanisms, pathogenesis, and therapeutic perspectives.

Biomed Pharmacother

March 2025

Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China. Electronic address:

Cardiovascular diseases (CVDs) are the leading cause of rising morbidity and mortality among humans worldwide; however, our approach to the pathogenesis, exploration, and management of CVDs still remains limited. As the heart consists of cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth muscle cells, and several types of cells, different types of dysfunction in the interplay between organelles play an important damaging role, resulting in cardiac pathologies. The interplay between cellular organelles is intricate and vital for maintaining cellular homeostasis, as highlighted by multiple diseases linked to the dysfunction of both organelles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!