In this study, a new nanocomposite comprising 4-(2-Aminoethyl)-morpholine, an organic catalyst, was prepared on the surface of silica. The absence of metal in the catalyst structure contributes to its environmental friendliness. This novel nanocatalyst was used for multi-component reactions (MCRs). Having a nano size for the composite enhances the contact between the raw materials and the catalytic surface, leading to significant advancement in the reaction. The synthesized composite was identified and evaluated using FT-IR, EDX, EDX-Mapping, TGA, XRD, BET, TEM, and FE-SEM analysis. The characteristic analysis confirmed the synthesis of both nano-silica/4-(2-Aminoethyl)-morpholine catalyst and polyhydroquinoline. The composite's catalytic properties for synthesizing some polyhydroquinoline derivatives were investigated, yielding promising and remarkable results with high 95% yields and short reaction times. The antibacterial properties of the synthesized compounds were also examined against four types of pathogenic bacteria. The highest inhibitory effect was attributed to the compound Ethyl-4-(3-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate exhibited the highest antibacterial properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874776PMC
http://dx.doi.org/10.1186/s13065-025-01403-7DOI Listing

Publication Analysis

Top Keywords

antibacterial properties
8
nanao/organocatalyat sio/4-2-aminoethyl-morpholine
4
sio/4-2-aminoethyl-morpholine reusable
4
reusable efficacious
4
catalyst
4
efficacious catalyst
4
catalyst synthesis
4
synthesis polyhydroquinolines
4
polyhydroquinolines derivatives
4
derivatives antibacterially
4

Similar Publications

Novel treatment options are needed for the gastric pathogen due to its increasing antibiotic resistance. The vitamin K analogue menadione has been extensively studied due to interest in its anti-bacterial and anti-cancer properties. Here, we investigated the effects of menadione on growth, viability, antibiotic resistance, motility and gene expression using clinical isolates.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is one of the major global concerns in the current scenario. Mass-gathering events in fast-developing and densely populated areas may contribute to antibiotic resistance. Despite meticulous planning and infrastructure development, the effect of mass gatherings on microbial ecosystems and antibiotic resistance must be investigated.

View Article and Find Full Text PDF

Chronic or improperly healed wounds, either as a result of extended trauma or prolonged inflammatory response, affect a significant percentage of the world population. Hence, there is a growing interest in the development of biomimetic scaffolds that expedite wound closure at the early stages. Curcumin (Cur) is a plant-derived polyphenol with antimicrobial activity, and it accelerates the wound contraction rate.

View Article and Find Full Text PDF

The use of metal nanoparticles is gaining popularity owing to their low cost and high efficacy. We focused on green synthesis of silver nanoparticles (AgNPs) using (Tc) leaf extracts. The structural characteristics of Tc nanoparticles (TcAgNPs) were determined using several advanced techniques.

View Article and Find Full Text PDF

Exudate management and cell activity enhancement are vital to complicated wound healing. However, current exudate management dressings indiscriminately remove exudate, which is detrimental to cell activity enhancement. Herein, a novel class of electroactive bilayer (cMO/PVA) dressing is developed by constructing manganese oxide nanoneedle-clusters decorated commercial carbon cloth (MO), in situ casting polyvinyl alcohol (PVA) hydrogel, and finally charging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!