Contact-free rotation of microscopic objects in aqueous environments based on optical forces is a powerful concept in the development of light-driven microrobots, micromachines, torque transducers, and rheological sensors. Here, we demonstrate freely movable quasi-two-dimensional metasurface rotors with lateral dimensions up to 100 μm while still exhibiting controllable and steady rotation when submerged in water. The metarotors utilize photon recoil to produce strong optical torque by deflecting low-intensity laser light toward high angles via long lever arms, which amplify the creation of orbital angular momentum. We find that the torque generated by a single metarotor can be used to rotate hundreds of passive microparticles present in solution, suggesting potential applications as particle mixers in microfluidics and microbiology. Further development might involve utilizing metarotors as components in future microrobots for biomedicine and beyond.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c06410DOI Listing

Publication Analysis

Top Keywords

photon recoil
8
harnessing photon
4
recoil enhanced
4
torque
4
enhanced torque
4
torque light-driven
4
light-driven metarotors
4
metarotors contact-free
4
contact-free rotation
4
rotation microscopic
4

Similar Publications

Contact-free rotation of microscopic objects in aqueous environments based on optical forces is a powerful concept in the development of light-driven microrobots, micromachines, torque transducers, and rheological sensors. Here, we demonstrate freely movable quasi-two-dimensional metasurface rotors with lateral dimensions up to 100 μm while still exhibiting controllable and steady rotation when submerged in water. The metarotors utilize photon recoil to produce strong optical torque by deflecting low-intensity laser light toward high angles via long lever arms, which amplify the creation of orbital angular momentum.

View Article and Find Full Text PDF

Exploring New Physics with PandaX-4T Low Energy Electronic Recoil Data.

Phys Rev Lett

January 2025

Shanghai Jiao Tong University, School of Physics and Astronomy, Key Laboratory for Particle Astrophysics and Cosmology (MoE), Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, China.

New particles beyond the standard model of particle physics, such as axions, can be effectively searched through their interactions with electrons. We use the large liquid xenon detector PandaX-4T to search for novel electronic recoil signals induced by solar axions, neutrinos with anomalous magnetic moment, axionlike particles, dark photons, and light fermionic dark matter. A detailed background model is established using the latest datasets with 1.

View Article and Find Full Text PDF

Nanostructured dielectric metasurfaces offer unprecedented opportunities to control light-matter momentum exchange, and thereby the forces and torques that light can exert on matter. Here we introduce optical metasurfaces as components of ultracompact untethered microscopic metaspinners capable of efficient light-induced rotation in a liquid environment. Illuminated by weakly focused light, a metaspinner generates torque via photon recoil through the metasurfaces' ability to bend light towards high angles despite their sub-wavelength thickness, thereby creating orbital angular momentum.

View Article and Find Full Text PDF

In molecular beam scattering experiments, an important technique for measuring product energy and angular distributions is velocity map imaging following photoionization of one or more scattered species. For studies with cold molecular beams, the ultimate resolution of such a study is often limited by the product detection process. When state-selective ionization detection is used, excess energy from the ionization step can transfer to kinetic energy in the target molecular ion-electron pair, resulting in measurable cation recoil.

View Article and Find Full Text PDF

Optimal Floquet state engineering for large scale atom interferometers.

Nat Commun

November 2024

Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, UniversitéToulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062, Toulouse, France.

The effective control of atomic coherence with cold atoms has made atom interferometry an essential tool for quantum sensors and precision measurements. The performance of these interferometers is closely related to the operation of large wave packet separations. We present here a novel approach for atomic beam splitters based on the stroboscopic stabilization of quantum states in an accelerated optical lattice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!