Hypertensive nephropathy (HN), caused by long-term poorly controlled hypertension, is the second common cause of end-stage renal disease after diabetes mellitus, but the pathogenesis of HN is unclear. The purpose of this study was to identify the biological pathways involved in the progression of HN and bile acid (BA)-related biomarkers, and to analyze the role of bile acids in HN. Download gene microarray data from Gene Expression Omnibus. Differentially expressed genes (DEGs) associated with HN were identified, and then DEGs were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. A protein-protein interaction (PPI) network was established using DEGs to identify BA-related hub genes in combination with bile acid identical targets. An animal model of early hypertensive nephropathy was established using SHR and the concentrations of 39 bile acids were measured quantitatively in the renal cortex to screen for significantly different concentrations and to analyze the correlation between bile acid concentrations and blood pressure. A total of 398 DEGs were screened. The results of enrichment analysis identified multiple biological pathways associated with hypertension, nephropathy and bile acids. Combining PPI network and bile acid-related targets, three BA-related hub genes (APOE, ALB, SERPINA1) were identified. Quantitative analysis of bile acids revealed significant differences in the concentrations of seven bile acids (DCA, CDCA, UDCA, UCA, CA, TDCA, TCDCA). The concentrations of these bile acids showed a positive correlation with blood pressure values in SHR, with CA, DCA and TDCA showing a stronger correlation and specificity with blood pressure in SHR. Three BA-related hub genes (APOE, ALB, SERPINA1) may be involved in the early stages of HN. The concentrations of multiple bile acids were significantly elevated in the early stages of HN, with CA, DCA and TDCA being more correlated and specific with blood pressure and having higher diagnostic value. These BA-related hub genes and BAs may be involved in disease progression in the early stages of HN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876634 | PMC |
http://dx.doi.org/10.1038/s41598-025-89601-0 | DOI Listing |
Nutrients
March 2025
Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
Sodium acetate (NaA) has demonstrated potential in improving non-alcoholic fatty liver disease (NAFLD) by targeting hepatocytes and Kupffer cells. However, its clinical application is hindered by low oral bioavailability and insufficient liver concentrations. Liposomes, with their capacity to encapsulate water-soluble drugs and be surface-modified, offer a promising solution for targeted oral drug delivery.
View Article and Find Full Text PDFNutrients
February 2025
Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
Background/objectives: Previously, we found that caloric restriction (CR) in mice increases taurine levels by stimulating hepatic synthesis, secretion into the intestine and deconjugation of taurine-conjugated bile acids (BA). Subsequently, in the intestine, taurine conjugates various molecules, including glutathione (GSH). The current study explores the mechanisms behind forming taurine-GSH conjugate and its consequences for taurine, other taurine conjugates, and BA in order to improve understanding of their role in CR.
View Article and Find Full Text PDFInt J Mol Sci
March 2025
Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, BH-550 CHS, Los Angeles, CA 90095-7115, USA.
The effect of the gut microbiota extends beyond their habitant place from the gastrointestinal tract to distant organs, including the cardiovascular system. Research interest in the relationship between the heart and the gut microbiota has recently been emerging. The gut microbiota secretes metabolites, including Trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), bile acids (BAs), indole propionic acid (IPA), hydrogen sulfide (HS), and phenylacetylglutamine (PAGln).
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Department of Endocrinology and Metabolism, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany.
Cohort studies consistently show that a high intake of cereal fiber and whole-grain products is associated with a decreased risk of type 2 diabetes (T2DM), cancer, and cardiovascular diseases. Similar findings are also reported for infectious and chronic inflammatory disorders. All these disorders are at least partially caused by inflammaging, a chronic state of inflammation associated with aging and Metabolic Syndrome.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-9510, Japan.
Patients with chronic cholestatic liver diseases often experience itch and struggle with this symptom. We discuss the mechanism of itch in patients with chronic cholestatic liver diseases, such as primary biliary cholangitis (PBC) and others, and their therapies, including ileal bile acid transporter (IBAT) inhibitors. In patients with PBC, there are high serum/plasma concentrations of multiple factors, including bile salts, bilirubin, endogenous opioids, lysophosphatidic acid (LPA), autotaxin, and histamine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!