The Warburg effect, also known as aerobic glycolysis, plays a crucial role in the onset and progression of colorectal cancer (CRC), although its mechanism remains unclear. In this study, bioinformatics analysis of public databases combined with validation using clinical specimens identified the transcription factor ONECUT3 as a key regulator related to the Warburg effect in CRC. Functionally, silencing ONECUT3 reverses the Warburg effect and suppresses tumor growth. Importantly, ONECUT3 promotes tumor growth in a glycolysis-dependent manner through hypoxia-inducible factor 1α (HIF-1α). Mechanistically, ONECUT3 does not directly regulate the expression of HIF-1α but instead inhibits its acetylation via histone deacetylase 6 (HDAC6). This deacetylation enhances the transcriptional activity of HIF-1α, ultimately upregulating multiple glycolysis-related genes downstream of HIF-1α, thereby driving the Warburg effect and facilitating tumor growth in CRC. These findings reveal a novel mechanism by which ONECUT3 regulates the Warburg effect in CRC and suggest that targeting ONECUT3 may offer a promising therapeutic strategy for CRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876336PMC
http://dx.doi.org/10.1038/s41419-025-07457-8DOI Listing

Publication Analysis

Top Keywords

tumor growth
16
transcription factor
8
factor onecut3
8
onecut3 regulates
8
colorectal cancer
8
warburg crc
8
onecut3
7
warburg
6
crc
5
regulates hdac6/hif-1α
4

Similar Publications

The global incidence of biliary tract cancer (BTC) is on the rise, presenting a substantial healthcare challenge. The integration of immune checkpoint inhibitors (ICIs) with molecularly targeted therapies is emerging as a strategy to enhance immune responses. However, the efficacy and underlying mechanisms of these treatments in BTC are still largely unexplored.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) has been demonstrated to be an effective tool for cancer treatment. Seeking organelle-targeting photosensitizers (PSs) with robust reactive oxygen species (ROS) production is extremely in demand. Herein, we propose an aggregation-induced photosensitization strategy for effective PDT with osmium complexes.

View Article and Find Full Text PDF

Background: The imperative need for early cancer detection, which is crucial for improved survival rates in many severe cancers such as lung cancer, remains challenging due to the lack of reliable early-diagnosis technologies and robust biomarkers. To address this gap, innovative screening platforms are essential to unveil the chemical signatures of lung cancer and its treatments. It is established that the oxidative tumor environment induces alterations in host metabolic processes and influences endogenous volatile synthesis.

View Article and Find Full Text PDF

Oligosarcoma with chondroid metaplasia in a French bulldog.

J Vet Med Sci

March 2025

Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo.

A 5-year-4-month-old neutered female French bulldog had a brain mass that was surgically excised. Histologically, the tumor consisted of neoplastic oligodendroglial and spindle-shaped cells, and chondroid tissues. Immunohistochemically, oligodendroglial cells were immunopositive for oligodendrocyte transcription factor 2 (OLIG2), 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), platelet-derived growth factor receptor alpha (PDGFRA), vimentin, cluster of differentiation 44 (CD44), and WW domain containing transcription regulator 1 (WWTR1).

View Article and Find Full Text PDF

The 2017 World Health Organization classification described aggressive pituitary neuroendocrine tumor (PitNET) as "a tumor with strong invasiveness and rapid growth, which is difficult to treat with surgery, radiation therapy, or drug therapy," which remains a challenge in the treatment of pituitary tumors. Currently, temozolomide (TMZ) is the first-line treatment for aggressive PitNET. However, it is not yet covered by insurance in Japan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!