Fragile X Syndrome (FXS) is a neurodevelopmental disorder that can cause impairments in spatial cognition and memory. The hippocampus is thought to support spatial cognition through the activity of place cells, neurons with spatial receptive fields. Coordinated firing of place cell populations is organized by different oscillatory patterns in the hippocampus during specific behavioral states. Theta rhythms organize place cell populations during awake exploration. Sharp wave-ripples organize place cell population reactivation during waking rest. Here, we examined the coordination of CA1 place cell populations during active behavior and subsequent rest in a rat model of FXS ( knockout rats). While the organization of individual place cells by the theta rhythm was normal, the coordinated activation of sequences of place cells during individual theta cycles was impaired in knockout rats. Further, the subsequent replay of place cell sequences was impaired during waking rest following active exploration. Together, these results expand our understanding of how genetic modifications that model those observed in FXS affect hippocampal physiology and suggest a potential mechanism underlying impaired spatial cognition in FXS. Fragile X Syndrome (FXS) is a neurodevelopmental disorder that can cause impaired memory and atypical spatial behaviors such as "elopement" (i.e., wandering off and becoming lost). Activity in the CA1 subregion of the hippocampus supports spatial memory and spatial cognition, making it an important candidate to study in the context of FXS; however, how neuronal population activity in CA1 is affected by FXS is poorly understood. In this study, we found that the coordination of populations of CA1 neurons during active behavior and waking rest was impaired in a rat model of FXS. These results reveal hippocampal physiological deficits that may contribute to cognitive impairments in FXS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1523/JNEUROSCI.1978-24.2025 | DOI Listing |
Hippocampus
March 2025
UCL Institute of Cognitive Neuroscience, University College London, London, UK.
Grid and place cells typically fire at progressively earlier phases within each cycle of the theta rhythm as rodents run across their firing fields, a phenomenon known as theta phase precession. Here, we report theta phase precession relative to turning angle in theta-modulated head direction cells within the anteroventral thalamic nucleus (AVN). As rodents turn their heads, these cells fire at progressively earlier phases as head direction sweeps over their preferred tuning direction.
View Article and Find Full Text PDFChempluschem
March 2025
CIMAP: Centre de recherche sur les ions les materiaux et la photonique, UMR 6252 CEA/CNRS/Unicaen/Ensicaen, GANIL, Bd Becquerel, 14070, CAEN, FRANCE.
The direct effects of ionizing radiation on antibiotics are largely unknown. Here, we report mass spectra of the cationic products of the irradiation of three antibiotics by carbon ions at 10.4 MeV kinetic energy.
View Article and Find Full Text PDFLab Chip
March 2025
LAI, CNRS, INSERM, Turing Center for Living Systems, Aix Marseille Univ, Marseille, France.
Experiments with gradients of soluble bioactive species have significantly advanced with microfluidic developments that enable cell observation and stringent control of environmental conditions. While some methodologies rely on flow to establish gradients, others opt for flow-free conditions, which is particularly beneficial for studying non-adherent and/or shear-sensitive cells. In flow-free devices, bioactive species diffuse either through resistive microchannels in microchannel-based devices, through a porous membrane in membrane-based devices, or through a hydrogel in gel-based devices.
View Article and Find Full Text PDFEnviron Microbiome
March 2025
Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile.
Background: In plants, root exudates selectively influence the growth of bacteria that colonize the rhizosphere. Bacterial communities associated with root systems are involved in macro and micronutrients cycling and organic matter transformation. In particular, iron is an essential micronutrient required for the proper functioning of iron-containing enzymes in processes such as photosynthesis, respiration, biomolecule synthesis, redox homeostasis, and cell growth in plants.
View Article and Find Full Text PDFLeukemia
March 2025
Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland.
Therapy with pegylated interferon alpha (pegIFNα) can induce a deep molecular response in a subset of patients with myeloproliferative neoplasms (MPN). Here we investigated the role of Socs2, a negative regulator of cytokine signaling, in modulating the response to pegIFNα in a JAK2-V617F mouse model of MPN. Deleting Socs2 in JAK2-V617F mice resulted in increased sensitivity to cytokines, without causing significant alterations in the MPN phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!