Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Buspirone is a critical in treatment for generalized anxiety disorder (GAD), but the synthesis of its key intermediate, 2-(piperazin-1-yl) pyrimidine faces challenges in terms of cost, yield and purity. Traditional synthesis methods are hindered by high material costs and significant by-product formation, necessitating a more efficient and economical approach.
Objective: To develop a novel, cost-effective synthesis strategy for the 2-(piperazin-1-yl) pyrimidine intermediate that improves yield and purity while reducing production costs and environmental impact.
Methods: A four-step synthesis process was optimized as follows: First, piperazine reacts with sulfuric acid and cyanamide, followed by precipitation with cold methanol. Next, 1,1,3,3-tetramethoxypropane reacts with hydrochloric acid and amidine, and the mixture was extracted with dichloromethane (DCM). In the third step, the product was dissolved in isopropanol (IPA), treated with charcoal and converted to the oxalate salt using oxalic acid. Finally, the oxalate salt was converted to the freebase with ammonia, followed by a final extraction with DCM. Key variables such as reagent equivalents, reaction conditions and purification techniques were systematically optimized throughout the process.
Results: The optimized process achieved a purity level of over 99% and reduced production costs by 25-30%. Significant improvements included controlled bis-product formation with cyanamide, effective addition of 1,1,3,3-tetramethoxypropane and efficient removal of by-products through oxalate salt formation and charcoal treatment.
Conclusion: The developed synthesis method for 2-(piperazin-1-yl) pyrimidine was both cost-effective and efficient, significantly enhancing the yield and purity. This method is highly suitable for large-scale pharmaceutical production, aligning with industry goals of improved process efficiency, cost reduction and environmental sustainability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03639045.2025.2473505 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!