With the steady rise in tea production, the need for effective tea quality monitoring has become increasingly pressing. Traditional sensory evaluation and wet chemical detection methods are insufficient for real-time tea quality monitoring. As an emerging technology, near infrared spectroscopy (NIRS) offers numerous advantages, such as preserving sample integrity, generating objective results, and enabling rapid, straightforward assessments. These features make it an ideal choice for real-time tea quality testing. This paper systematically reviews the principles of NIRS, spectral preprocessing methods, statistical modeling techniques, and commonly used machine learning approaches. Furthermore, it provides an in-depth discussion of the research progress of NIRS in areas such as fresh tea leaf quality evaluation, rapid detection of tea-specific components, tea quality assessment and species identification, geographic traceability, development of NIRS equipment, and standardization. Future research directions in the tea field are also proposed. This review serves as a valuable resource for researchers aiming to understand the application and development of NIRS technology in the tea field. It offers insights to facilitate real-time tea quality monitoring and ultimately achieve intelligent quality control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2025.115870 | DOI Listing |
Food Chem
March 2025
State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, Anhui, PR China. Electronic address:
In this study, metabolomics and chemometrics were utilized to comprehensively investigate chemical mechanisms of aroma, taste, and color formation in cold-brewed green tea (4 °C). The results showed that the typical flavor of cold-brewed green tea (tea-to-water ratio: 1:50 g/mL) developed gradually after 1 h. Compared with the hot-brewed (80 °C) condition, volatile alcohols accumulated more under cold-brewing conditions.
View Article and Find Full Text PDFPlant Commun
March 2025
Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:
The Chinese white pear (Pyrus bretschneideri) is an economically significant fruit crop worldwide. Previous versions of the P. bretschneideri genome assembly contain numerous gaps and unanchored genetic regions.
View Article and Find Full Text PDFFront Public Health
March 2025
Jingshan Psychiatric Hospital, Jingmen, Hubei, China.
Background: Middle-aged and older adult men are at a heightened risk of depression. Green tea, as a popular beverage, has drawn widespread attention for its health benefits. However, there remains controversy over the effects of green tea on combating depression and regulating hormones.
View Article and Find Full Text PDFHortic Res
April 2025
School of Life Sciences/School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China.
Salicylic acid (SA) is a phenolic phytohormone widely believed to regulate plant growth and stress response. Despite its significance, the genetic basis of SA-mediated resistance to biotic stressors in tea plants is little understood. Our study investigated the genetic diversity, population structure, and linkage disequilibrium (LD) patterns of 299 tea accessions using 79 560 high-quality single nucleotide polymorphisms (SNPs) obtained from genotyping-by-sequencing (GBS) data.
View Article and Find Full Text PDFJ Adv Res
March 2025
Tea Research Institute, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China. Electronic address:
Introduction: Traditionally, the mechanism of dark tea quality formation has centered on microorganisms, with quality regulated by manipulating microorganisms and their fermentation environment. Nevertheless, raw teas, the natural selective medium of microbial community, was completely ignored in the formation of dark tea unique flavors.
Objectives: This study aims to uncover the previously unappreciated interactions between raw tea and microorganisms, demonstrating the significant role of raw tea in the formation of dark tea quality.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!