A review: Integration of NIRS and chemometric methods for tea quality control-principles, spectral preprocessing methods, machine learning algorithms, research progress, and future directions.

Food Res Int

Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064 China; Key Laboratory of Tea Resources Comprehensive Utilization, Ministry of Agriculture and Rural Affairs, Wuhan 430064 China. Electronic address:

Published: March 2025

With the steady rise in tea production, the need for effective tea quality monitoring has become increasingly pressing. Traditional sensory evaluation and wet chemical detection methods are insufficient for real-time tea quality monitoring. As an emerging technology, near infrared spectroscopy (NIRS) offers numerous advantages, such as preserving sample integrity, generating objective results, and enabling rapid, straightforward assessments. These features make it an ideal choice for real-time tea quality testing. This paper systematically reviews the principles of NIRS, spectral preprocessing methods, statistical modeling techniques, and commonly used machine learning approaches. Furthermore, it provides an in-depth discussion of the research progress of NIRS in areas such as fresh tea leaf quality evaluation, rapid detection of tea-specific components, tea quality assessment and species identification, geographic traceability, development of NIRS equipment, and standardization. Future research directions in the tea field are also proposed. This review serves as a valuable resource for researchers aiming to understand the application and development of NIRS technology in the tea field. It offers insights to facilitate real-time tea quality monitoring and ultimately achieve intelligent quality control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2025.115870DOI Listing

Publication Analysis

Top Keywords

tea quality
24
quality monitoring
12
real-time tea
12
tea
10
quality
8
spectral preprocessing
8
preprocessing methods
8
machine learning
8
future directions
8
development nirs
8

Similar Publications

The chemical basis of aroma/taste and color formation in green tea infusion during cold brewing revealed by metabolomics analysis.

Food Chem

March 2025

State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, Anhui, PR China. Electronic address:

In this study, metabolomics and chemometrics were utilized to comprehensively investigate chemical mechanisms of aroma, taste, and color formation in cold-brewed green tea (4 °C). The results showed that the typical flavor of cold-brewed green tea (tea-to-water ratio: 1:50 g/mL) developed gradually after 1 h. Compared with the hot-brewed (80 °C) condition, volatile alcohols accumulated more under cold-brewing conditions.

View Article and Find Full Text PDF

The Chinese white pear (Pyrus bretschneideri) is an economically significant fruit crop worldwide. Previous versions of the P. bretschneideri genome assembly contain numerous gaps and unanchored genetic regions.

View Article and Find Full Text PDF

Background: Middle-aged and older adult men are at a heightened risk of depression. Green tea, as a popular beverage, has drawn widespread attention for its health benefits. However, there remains controversy over the effects of green tea on combating depression and regulating hormones.

View Article and Find Full Text PDF

Salicylic acid (SA) is a phenolic phytohormone widely believed to regulate plant growth and stress response. Despite its significance, the genetic basis of SA-mediated resistance to biotic stressors in tea plants is little understood. Our study investigated the genetic diversity, population structure, and linkage disequilibrium (LD) patterns of 299 tea accessions using 79 560 high-quality single nucleotide polymorphisms (SNPs) obtained from genotyping-by-sequencing (GBS) data.

View Article and Find Full Text PDF

Reshaped local microbiology metabolism by raw tea according to pile fermentation in the dark tea.

J Adv Res

March 2025

Tea Research Institute, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China. Electronic address:

Introduction: Traditionally, the mechanism of dark tea quality formation has centered on microorganisms, with quality regulated by manipulating microorganisms and their fermentation environment. Nevertheless, raw teas, the natural selective medium of microbial community, was completely ignored in the formation of dark tea unique flavors.

Objectives: This study aims to uncover the previously unappreciated interactions between raw tea and microorganisms, demonstrating the significant role of raw tea in the formation of dark tea quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!