Harnessing the effect of the cyclic GMP-AMP Synthase-STimulator of INterferon Genes (cGAS-STING) signaling pathway has emerged as a promising approach to developing novel strategies for the oral treatment of inflammatory bowel disease (IBD). In this work, we screened different cGAS-STING inhibitors in murine macrophages. Then, we encapsulated the cGAS-STING inhibitor H-151 within lipid nanocapsules (LNCs), owing to their inherent ability to induce the secretion of glucagon-like peptide 2 (GLP-2), a re-epithelizing peptide, upon oral administration. We demonstrated that our formulation (LNC(H-151)) could induce GLP-2 secretion and selectively target the cGAS-STING pathway and its downstream key markers (including TBK1 and pTBK1) while reducing the expression of pro-inflammatory cytokines associated with the cGAS-STING pathway (TNF-α and CXCL10) in murine macrophages. In an acute dextran sodium sulfate (DSS)-induced colitis mouse model, the oral administration of LNC(H-151) significantly reduced pro-inflammatory cytokines to levels comparable to the CTRL Healthy group while promoting mucosal healing. The therapeutic potential of this scalable and cost-effective nanomedicine warrants further investigation as an alternative for the oral treatment of IBD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.4c01297 | DOI Listing |
J Immunol
January 2025
Institute of Virology and Immunology, Mittelhäusern, Switzerland.
While several African swine fever virus (ASFV)-encoded proteins potently interfere with the cGAS-STING (cyclic GMP-AMP synthetase-stimulator of interferon genes) pathway at different levels to suppress interferon (IFN) type I production in infected macrophages, systemic IFN-α is induced during the early stages of AFSV infection in pigs. The present study elucidates a mechanism by which such responses can be triggered, at least in vitro. We demonstrate that infection of monocyte-derived macrophages (MDMs) by ASFV genotype 2 strains is highly efficient but immunologically silent with respect to IFN type I, IFN-stimulated gene induction, and tumor necrosis factor production.
View Article and Find Full Text PDFCell Mol Life Sci
March 2025
Institute for Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.
Signal peptide peptidase (SPP) is an ER-resident aspartyl intramembrane protease cleaving proteins within type II-oriented transmembrane segments. Here, we identified the tail-anchored protein Three prime repair exonuclease 1 (TREX1) as a novel substrate of SPP. Based on its DNase activity, TREX1 removes cytosolic DNA acting as a negative regulator of the DNA-sensing cGAS/STING pathway.
View Article and Find Full Text PDFCells
February 2025
Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil.
The progression of COVID-19 involves a sophisticated and intricate interplay between the SARS-CoV-2 virus and the host's immune response. The immune system employs both innate and adaptive mechanisms to combat infection. Innate immunity initiates the release of interferons (IFNs) and pro-inflammatory cytokines, while the adaptive immune response involves CD4+ Th lymphocytes, B lymphocytes, and CD8+ Tc cells.
View Article and Find Full Text PDFInt J Immunopathol Pharmacol
March 2025
Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan.
Objective: The effect of the cGAS/STING pathway on antitumor immunity and its connection to senescence in vivo necessitates further investigation.
Introduction: Cellular senescence and its secretory phenotype (the SASP) are implicated in modulating the immune microenvironment of cancer possibly through the cGAS/STING pathway.
Methods: Gene expression data from paired colon cancer and adjacent non-malignant mucosa (98 patients, = 196 samples; 65 patients, = 130 samples) were analyzed for cGAS/STING and a senescence signature.
Homologous recombination deficiency (HRD) contributes to genomic instability and leads to sensitivity to poly ADP-ribose polymerase inhibitors (PARPi). HRD also activates the cyclic GMP-AMP synthase (cGAS)-STimulator of INterferon Genes (STING)-Interferon (IFN) pathway, highlighting the need to understand the impact of cGAS-STING-IFN signaling on PARPi efficacy. In this study, we analyzed a cohort of thirty-five breast cancer (BC) patient-derived xenografts (PDX) and mouse-derived allografts (MDA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!