Acute dentate nucleus deep brain stimulation modulates corticomotor excitability in chronic stroke survivors.

Brain Stimul

Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Rehabilitation Hospitals, Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA. Electronic address:

Published: March 2025

Background: Deep brain stimulation of the dentate nucleus (DN-DBS) is an emerging therapy to improve upper extremity (UE) motor function after stroke. This study sought to investigate the physiologic mechanisms of acute DN-DBS in chronic stroke survivors enrolled in a phase I trial for DN-DBS.

Methods: Twelve chronic stroke participants with moderate-to-severe UE impairment received (acute) single sessions (≥45 min) of active DBS and sham DBS in a sham-controlled, double-blind, cross-over experiment (order randomized). Transcranial magnetic stimulation (TMS) was used to evaluate corticomotor physiology. We also characterized the relationship between acute DBS effects on physiology and baseline clinical and neuroimaging measures, and chronic DBS effects on motor function.

Results: Acute active DBS led to an increase in ipsilesional corticomotor excitability evident as a 5.2% maximal stimulator output (MSO) reduction in active motor threshold (p=0.017, d=0.28), but there was no effect of acute sham DBS. Increases in corticomotor excitability observed with acute DBS were associated with higher microstructural integrity of ipsilesional corticospinal tract (r>0.70, p<0.017) and dentato-thalamo-cortical pathways (ρ>0.69, p<0.022). Gains in corticomotor excitability with acute DBS were associated with higher dexterity gains made with chronic DBS plus rehabilitation (r>0.65, p<0.028).

Conclusions: Acute DN-DBS leads to heightened ipsilesional corticomotor excitability in moderate-to-severe chronic stroke survivors. Effects of acute DN-DBS on physiology are contingent upon structural preservation of key white matter tracts and associated with motor gains made with chronic DN-DBS. Findings provide mechanistic support of DN-DBS as a potential therapy for post-stroke motor recovery and potential of TMS to monitor responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2025.02.021DOI Listing

Publication Analysis

Top Keywords

corticomotor excitability
12
chronic stroke
12
dentate nucleus
8
deep brain
8
brain stimulation
8
stroke survivors
8
active dbs
8
sham dbs
8
acute dbs
8
dbs effects
8

Similar Publications

Acute dentate nucleus deep brain stimulation modulates corticomotor excitability in chronic stroke survivors.

Brain Stimul

March 2025

Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Rehabilitation Hospitals, Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA. Electronic address:

Background: Deep brain stimulation of the dentate nucleus (DN-DBS) is an emerging therapy to improve upper extremity (UE) motor function after stroke. This study sought to investigate the physiologic mechanisms of acute DN-DBS in chronic stroke survivors enrolled in a phase I trial for DN-DBS.

Methods: Twelve chronic stroke participants with moderate-to-severe UE impairment received (acute) single sessions (≥45 min) of active DBS and sham DBS in a sham-controlled, double-blind, cross-over experiment (order randomized).

View Article and Find Full Text PDF

Importance: Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.

Objective: To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).

Design, Setting, And Participants: This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia.

View Article and Find Full Text PDF

Most activities of daily life involve some degree of coordinated, bimanual activity from the upper limbs. However, compared to single-handed movements, bimanual movements are processed, learned, and controlled from both hemispheres of the brain. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that enhances motor learning by modulating the activity of movement-associated brain regions.

View Article and Find Full Text PDF

Selectively stopping individual parts of planned or ongoing movements is an everyday motor skill. For example, while walking in public, you may stop yourself from waving at a stranger who you mistook for a friend while continuing to walk. Despite its ubiquity, our ability to selectively stop actions is limited.

View Article and Find Full Text PDF

Determining the effects of transcranial alternating current stimulation on corticomotor excitability and motor performance: A sham-controlled comparison of four frequencies.

Neuroscience

March 2025

Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne Australia. Electronic address:

Transcranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!