Lignin has been an abundant biomass resource with remarkable potential to produce value-added chemicals. The comprehensive process from lignin degradation to the biological conversion of its monomers remains a challenge for demonstrating the industrial applicability of lignin refinery. Herein, Pseudomonas putida KT-PDCV overexpressing homologous vanillate-O-methylase (VanAB) could efficiently produce 2-pyrone-4,6-dicarboxylic acid (PDC) from lignin-derived compounds (LDC), including S-unit monomers (e.g., syringate and syringaldehyde). The engineered strain efficiently consumed syringate with other types of LDCs, such as p-coumarate and ferulate, and produced PDC up to 67.2 mM from mixed model lignin with a molar yield of 98 %. The efficient electrolyzer degraded practical lignin into the S-unit-dominant mixture of LDCs with remarkable performance. In addition, P. putida KT-PDCV directly utilized the mixture of LDCs without significant susceptibility to impurities, yielding a PDC of 0.91 mM with a molar yield of 62.3 %.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141657DOI Listing

Publication Analysis

Top Keywords

2-pyrone-46-dicarboxylic acid
8
pseudomonas putida
8
putida kt-pdcv
8
molar yield
8
mixture ldcs
8
lignin
6
efficient biological
4
biological funneling
4
funneling lignin
4
lignin 2-pyrone-46-dicarboxylic
4

Similar Publications

Quantum Well Superlattice Heteronanostructures for Efficient Photocatalytic Hydrogen Evolution.

ACS Nano

March 2025

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.

In this study, we construct a quantum well effect-based two-dimensional Z-scheme superlattice heteronanostructure photocatalyst constructed from hydrogen-bonded porphyrin organic frameworks (HOFs) and carbon nitride. Porphyrin HOFs extend spectral absorption, while their π-conjugation and electron density variations significantly enhance charge separation and exhibit favorable alignment with the energy levels of carbon nitride, thereby enabling efficient charge transfer. Carboxylic acid channels in the HOFs further promote the decomposition of water molecules, thereby boosting hydrogen production.

View Article and Find Full Text PDF

Saline irrigation improves survival of forage sorghum but limits growth and increases toxicity.

Plant Biol (Stuttg)

March 2025

School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.

Moderately saline water has been proposed as a potential irrigation resource for crops such as forage sorghum (Sorghum bicolor × Sorghum bicolor nothosubsp. drummondii) in drought-prone regions. However, it is not yet fully understood how salinity affects growth and potential toxicity of sorghum.

View Article and Find Full Text PDF

Multi-omics uncover acute stress vulnerability through gut-hypothalamic communication in ducks.

Br Poult Sci

March 2025

State Key Laboratory for Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

1. The avian gut hosts a complex and dynamic microbial ecosystem, which is essential for regulating host organ function. However, the relationship between the gut microbiota and the hypothalamic axis in acute stress vulnerability in ducks remains unclear.

View Article and Find Full Text PDF

Based on data from a randomized, controlled vaccine efficacy trial, this article develops statistical methods for assessing vaccine efficacy (VE) to prevent COVID-19 infections by a discrete set of genetic strains of SARS-CoV-2. Strain-specific VE adjusting for possibly time-varying covariates is estimated using augmented inverse probability weighting to address missing viral genotypes under a competing risks model that allows separate baseline hazards for different risk groups. Hypothesis tests are developed to assess whether the vaccine provides at least a specified level of VE against some viral genotypes and whether VE varies across genotypes.

View Article and Find Full Text PDF

Importance: Peripheral (blood-based) biomarkers for psychiatric illness could benefit diagnosis and treatment, but research to date has typically been low throughput, and traditional case-control studies are subject to potential confounds of treatment and other exposures. Large-scale 2-sample mendelian randomization (MR) can examine the potentially causal impact of circulating proteins on neuropsychiatric phenotypes without these confounds.

Objective: To identify circulating proteins associated with risk for schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) as well as cognitive task performance (CTP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!