One-step microbial cultivated bacterial cellulose membrane with 1D/2D nanochannels for efficient osmotic energy conversion.

Int J Biol Macromol

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.

Published: March 2025

Osmotic energy conversion based on bio-inspired layered membranes has garnered significant interest. However, traditional biomass ion-selective membranes suffer from complex preparation, uneconomic nature, poor selectivity, and low power density. Here, we introduce scalable one-step in situ culture for nanofluidic membrane materials (GO/C-BC) composed of graphene oxide (GO), carboxymethyl cellulose sodium salt (CMC), and bacterial cellulose (BC). This preparation method effectively combines 1D and 2D nanochannels, reduces membrane resistance, and increases power density. The GO/C-BC membrane exhibits excellent cation selectivity (0.89), achieving energy conversion efficiency of 31.40 % and delivering a power density of 7.49 W m under a 500-fold concentration gradient. Stability tests under artificial seawater and river water conditions show only a 4.44 % decrease in power density after 20 d, highlighting its excellent stability and durability. Moreover, by connecting 28 power units in series, the membrane can produce a voltage output of -4 V. This scalable and environmentally friendly biomass material presents new avenues for osmotic energy conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141655DOI Listing

Publication Analysis

Top Keywords

energy conversion
16
power density
16
osmotic energy
12
bacterial cellulose
8
membrane
5
power
5
one-step microbial
4
microbial cultivated
4
cultivated bacterial
4
cellulose membrane
4

Similar Publications

Boosted Scavenger-Free Overall Nitrogen Photofixation with Molybdenum Incorporated Bismuth-Rich Oxychlorides.

Small

March 2025

Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.

The design of highly efficient photocatalysts to photoreduce nitrogen (N) to ammonia (NH) under mild conditions is extremely challenging. In this work, various molar ratio of molybdenum (Mo) is incorporated into BiOCl via a hydrothermal process. The resulting Mo-doped BiOCl exhibits remarkable solar-driven activity for N photo fixation without any scavengers or sacrificial agents.

View Article and Find Full Text PDF

Enhanced Hot/Free Electron Effect for Photocatalytic Hydrogen Evolution Based on 3D/2D Graphene/MXene Composite.

Small

March 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.

Photocatalytic hydrogen production through water splitting represents a promising strategy to store solar energy as chemical energy. Current photocatalysts primarily focus on traditional semiconductor materials, such as metal oxides, sulfides, nitrides, g-CN, etc. However, these materials often suffer from large bandgap and fast charge recombination, which limit sunlight utilization and result in unsatisfactory photon conversion efficiency.

View Article and Find Full Text PDF

High-Capacity Volumetric Methane Storage in Hyper-Cross-Linked Porous Polymers via Flexibility Engineering of Building Units.

Adv Mater

March 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Adsorbed natural gas (ANG) storage is emerging as a promising alternative to traditional compressed and liquefied storage methods. However, its onboard application is restricted by low volumetric methane storage capacity. Flexible porous adsorbents offer a potential solution, as their dense structures and unique gate-opening effects are well-suited to enhance volumetric capacity under high pressures.

View Article and Find Full Text PDF

Non-copper-based Catalysts for CO2 Electroreduction to Multi-carbon Compounds.

ChemSusChem

March 2025

Xiamen University, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming Rd., Xiamen 361005, China, 361005, Xiamen, Fujian, China, CHINA.

Renewable energy has made significant strides, with the cost of clean electricity plummeting, making the use of renewable electricity for electrocatalytic CO2 reduction to synthesize high-value chemicals and fuels more economically attractive. Notably, certain non-copper-based electrocatalysts have shown remarkable selectivity for C2+ products at low overpotentials, even enabling the production of multi-carbon molecules that are undetectable on copper-based electrodes. This breakthrough opens up new avenues for research into non-copper catalysts.

View Article and Find Full Text PDF

The delicate construction of electrocatalysts with high catalytic activity is a strategic method to enhance the kinetics of lithium-sulfur batteries (LSBs). Adjusting the local structure of the catalyst is always crucial for understanding the structure-activity relationship between atomic structure and catalyst performance. Here, in situ induction of electron-deficient B enables phase engineering MoC, realizing the transition from hexagonal (h-MoC) to cubic phase (c-B-MoC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!