A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

P2X7 receptor augments kainic acid-induced nitrosative stress by abrogating GS-HSP25-mediated iNOS inhibition and GSH synthesis in the mouse hippocampus. | LitMetric

P2X7 receptor augments kainic acid-induced nitrosative stress by abrogating GS-HSP25-mediated iNOS inhibition and GSH synthesis in the mouse hippocampus.

Mol Cell Neurosci

Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.

Published: March 2025

Glutathione (GSH) and heat shock protein 25 (HSP25) reciprocally regulate each other, which maintain redox homeostasis. Since P2X7 receptor (P2X7R) regulates GSH biosynthesis and HSP25 induction, the present study was conducted to explore the role of P2X7R in the reciprocal regulation between HSP25 and GSH in response to kainic acid (KA)-induced nitrosative stress and the related signal pathways, which are largely unknown. The present data demonstrate that P2X7R deletion attenuated KA-induced reductions in total GSH level and nuclear factor-erythroid 2-related factor 2 (Nrf2) intensity/nuclear translocation in astrocytes. P2X7R ablation increased Nrf2 intensity/nuclear translocation in microglia following KA treatment. P2X7R deletion also ameliorated KA-induced inducible nitric oxide synthase (iNOS) and S-nitrosylated-cysteine (SNO-Cys) inductions in microglia and astrocytes. However, P2X7R ablation could not affect KA-induced nuclear Nrf2 translocation and SNO-Cys production in CA3 neurons. Furthermore, P2X7R ablation mitigated S-nitrosylations of glutamine synthase (GS) and alanine-serine-cysteine transporter 2 (ASCT2) induced by KA. HSP25 knockdown increased GSH consumption, astroglial iNOS level and S-nitrosylations of GS and ASCT2, but decreased Nrf2 intensity/nuclear translocation in astrocytes of P2X7R mice following KA injection. These findings indicate that P2X7R facilitated iNOS upregulation by inhibiting HSP25 induction and nuclear Nrf2 translocation in astrocytes, which augmented nitrosative stress-mediated reduction in GSH biosynthesis in response to KA. Therefore, our data suggest that the targeting of P2X7R-Nrf2-iNOS-GS-HSP25 pathway may be required for the maintenance of GSH-mediated redox homeostasis against nitrosative stress, which would prevent the progression of undesirable consequences from seizures and neuroinflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2025.103995DOI Listing

Publication Analysis

Top Keywords

nitrosative stress
12
nrf2 intensity/nuclear
12
intensity/nuclear translocation
12
translocation astrocytes
12
astrocytes p2x7r
12
p2x7r ablation
12
p2x7r
9
p2x7 receptor
8
redox homeostasis
8
gsh biosynthesis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!