Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the field of gland segmentation in histopathology, deep-learning methods have made significant progress. However, most existing methods not only require a large amount of high-quality annotated data but also tend to confuse the internal of the gland with the background. To address this challenge, we propose a new semi-supervised method named DCCL-Seg for gland segmentation, which follows the teacher-student framework. Our approach can be divided into follows steps. First, we design a contrastive learning module to improve the ability of the student model's feature extractor to distinguish between gland and background features. Then, we introduce a Signed Distance Field (SDF) prediction task and employ dual-consistency strategy (across tasks and models) to better reinforce the learning of gland internal. Next, we proposed a pseudo label filtering and reweighting mechanism, which filters and reweights the pseudo labels generated by the teacher model based on confidence. However, even after reweighting, the pseudo labels may still be influenced by unreliable pixels. Finally, we further designed an assistant predictor to learn the reweighted pseudo labels, which do not interfere with the student model's predictor and ensure the reliability of the student model's predictions. Experimental results on the publicly available GlaS and CRAG datasets demonstrate that our method outperforms other semi-supervised medical image segmentation methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2025.3546698 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!