Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As the elderly population grows, falling accidents become more frequent, and the need for fall-risk monitoring systems increases. Deep learning models for fallrisk movement detection neglect the connections between the terrain and fall-hazard movements. This issue can result in false alarms, particularly when a person encounters changing terrain. This work introduces a novel multisensor system that integrates terrain perception sensors with an inertial measurement unit (IMU) to monitor fall-risk on diverse terrains. Additionally, a dual-task learning (DTL) architecture that is based on a modified CNNLSTM model is implemented; it is used to determine fall-risk level and the terrain from sensor signals. Three fall-risk levels - "normal," "near-fall," and "fall" - are identified as being associated with "flat ground," "stepping up," and "stepping down" terrains. Ten young subjects performed 16 activities on flat and stepping terrains in a laboratory setting, and ten elderly individuals were recruited to perform four activities in the hospital. The accuracies of classification of fall-risk levels and terrains by the proposed system are 97.6% and 95.2%, respectively. The system detects pre-impact fall movements, with a fall prediction accuracy of 97.7% and an average lead time of 329ms for fall trials, revealing the model's effectiveness. The overall monitoring accuracy for elderly individuals is 99.8%, confirming the robustness of the proposed system. This work discusses the impact of sensor type and the model architecture of DTL on the classification of fall-risk levels across various terrains. The results demonstrate that the proposed method is reliable for monitoring the risk of falling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2025.3536030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!